学位论文 > 优秀研究生学位论文题录展示

Wrpp半群的若干研究

作 者: 胡志斌
导 师: 郭小江
学 校: 江西师范大学
专 业: 应用数学
关键词: Wrpp半群 C-wrpp半群 平移壳 逆wpp半群 半格 完全wpp半群 密码wpp半群
分类号: O152.7
类 型: 硕士论文
年 份: 2009年
下 载: 11次
引 用: 0次
阅 读: 论文下载
 

内容摘要


本学位论文研究了几类wrpp半群,全文分为相对独立的四章.第一章,研究了C-wrpp半群平移壳,证明了:C-wrpp半群的平移壳仍然是C-wrpp半群.第二章,研究逆wrpp半群,获得了逆wrpp半群的一些结构特征.特别地,我们给出了关于C-wrpp半群的一些重要性质.另外,研究了另一类称为基本逆wpp半群的逆wpp半群,我们推广了adequate半群的相关结果.第三章,研究了逆wpp半群的平移壳问题,证明了:逆wpp半群的平移壳仍然是逆wpp半群.第四章研究完全wpp半群,给出了完全wpp半群的一些性质.特别地,研究了密码wpp半群的结构问题,建立了密码wpp半群的Clifford半格分解定理,我们推广了完全正则半群的相关结果.

全文目录


摘要  3-4
Abstract  4-7
Chapter 1 The translational hull of a C-wrpp semigroup  7-13
  1.1 Introduction and Main Result  7-8
  1.2 Proofs of Theorem 1.1.1  8-13
Chapter 2 Inverse wpp semigroups  13-22
  2.1 Introduction  13-14
  2.2 Concepts and Basic Properties  14-16
  2.3 The congruence μ~(**)  16-20
  2.4 Fundamental inverse wpp semigroups  20-22
Chapter 3 The translational hulls of inverse wpp semigroups  22-29
  3.1 Introduction and Main Result  22-23
  3.2 Preliminaries  23
  3.3 Proof of Theorem 3.1.1  23-29
Chapter 4 Cryptic wpp semigroups  29-36
  4.1 Introduction  29-30
  4.2 Preliminaries  30-31
  4.3 Definitions and Properties  31-33
  4.4 Semilattice decomposition Theorem  33-36
Bibliography  36-38
致谢  38-39
Publications  39

相似论文

  1. Green关系的推广及其应用,O152.7
  2. 半群的断面和偏序,O152.7
  3. 半格,并完全格和某些逆半群上的(?)-凝聚算子,O152.7
  4. 型F的右适当半群,O152.7
  5. L-半格范畴,O153.1
  6. 半群上的格林关系和同余,O152.7
  7. 广义正则半群的某些问题的研究,O152.7
  8. 某些双半环的结构,O153.3
  9. 关于几类广义正则半群的研究,O152.7
  10. 关于半群的加细半格的应用,O152.7
  11. 几类广义正则半群的半直积及结构,O152.7
  12. 几类完全正则半环的性质,O152.7
  13. H~#-富足半群,O152.7
  14. (?)-幂幺半群和wlpp半群的若干研究,O152.7
  15. 硬正则带和完全单半群的强半格及它们的双同余逆半群,O152.7
  16. 某些半群的带分解及其推广,O152.7
  17. π-正则半群上的弱自然偏序关系及应用,O152.7
  18. Rees矩阵半群的推广及某些半群的结构,O152.7
  19. 关于某些半环的结构和同余,O153.3
  20. 关于半群的半格的某些探究,O153.1

中图分类: > 数理科学和化学 > 数学 > 代数、数论、组合理论 > 群论 > 群的推广
© 2012 www.xueweilunwen.com