学位论文 > 优秀研究生学位论文题录展示

幂零群和可解群的一些研究

作 者: 苛塔 巴拉克
导 师: 储茂权
学 校: 安徽师范大学
专 业: 基础数学
关键词: locally 幂零群 可解群 identity have only numb consists 安徽师范大学 Lagrange
分类号: O152
类 型: 硕士论文
年 份: 2004年
下 载: 61次
引 用: 0次
阅 读: 论文下载
 

内容摘要


The principal object of this thesis is to verify if a group that satisfies the normalizer condition does contain a nontrivial abelian normal subgroup. The main reason proposing the topic is that at the time we wrote the report we had no clue as to whether the question had been answered or not.To work on this we proposed the theme (studies on Nilpotent and Soluble groups) which is structured on three chapters.Chapter zero of this thesis gives a brief introduction to the fundamental concepts of group theory-here we collect almost all the information that the rest of this thesis requires.In chapter one we shall study ways in which a group may be decomposed into a set of groups each of which is in some sense of simpler type. We shall develop further the theory introduced in chapter zero of the normal structure of a group. We shall prove the Jordan -Holder theorem and introduce two important classes that are objects of this thesis, the classes of Nilpotent groups and soluble groups. The most important generalizations of commutativity are solubility and Nilpotency. Soluble groups are those that can be constructed from abelain groups by means of a finite number of successive extensions.Not all groups are soluble, for it is clear that nonabelian simple groups are insoluble.A central series is certainly an abelian series and therefore all nilpotent groups are soluble. However, soluble groups are not necessarily nilpotent.For example, let G = S3 and let H be the unique subgroup of G of order 3. Then 1 H G is an abelian series of G , and therefore S3 is soluble. On other hand S3 is not nilpotent, for Z(S3) - 1 and therefore S3 cannot have a central series.Nilpotent groups form a class smaller than that of soluble groups but larger than that of abelian groups. Their definition is more complicated, but they can be more intimately studied than soluble groups. In this chapter we shall prove that a Nilpotent group G satisfies the normalizer condition and we shall use 1. 2. 7 in replying to our principal object.In chapter two we shall talk about generalizations of Nilpotent groups. Of the teeming generalizations of Nilpotence we mention only: local nilpotence and the normalizer condition.

全文目录


相似论文

  1. 整系数多项式的因式分解方法研究,O174.14
  2. 导电体电磁散射问题H-矩阵算法研究,O441
  3. 子群的s-拟正规嵌入和弱s-可补性质对有限群结构的影响,O152.1
  4. 以记忆与想象共筑之文化身份为品牌内涵,F273.2
  5. 三阶拉格朗日方程两个形式的研究,O316
  6. 广义补子群对有限群结构的影响,O152.1
  7. 预正规性对有限群的结构及性质的影响,O152.1
  8. 大型电力系统电压稳定评估指标及算法研究,TM712
  9. 高师院校专业结构调整问题研究,G652.4
  10. 关于有限群次正规子群的研究,O152.1
  11. 粒子群优化算法及其在非线性回归模型中的应用研究,O212.1
  12. 增广Lagrange算法及其在无线光通信系统优化设计中的应用,TN929.1
  13. 基于MPS法的不可压流体的研究与模拟,TP391.41
  14. 一种构造多元拉格朗日插值多项式的新方法,O174.14
  15. 求解半无限规划问题的对数型Lagrange函数,O221
  16. 一类向量极值问题的研究,O177.31
  17. 具有无界扰动的非对称振动的Lagrange稳定性,O175.12
  18. 最高阶元素个数为2pq~2的有限群,O152.1
  19. Lagrange插值多项式逼近误差上界系数的改进,O174.14
  20. 子群的ss-拟正规性对有限群结构的影响,O152.1
  21. 具有2pqr~2阶自同构群的有限群,O152.1

中图分类: > 数理科学和化学 > 数学 > 代数、数论、组合理论 > 群论
© 2012 www.xueweilunwen.com