学位论文 > 优秀研究生学位论文题录展示

Z_s-相容连续偏序集和几类Domain的研究

作 者: 郭智莲
导 师: 赵彬
学 校: 陕西师范大学
专 业: 基础数学
关键词: 自由Dcpo 连续Domain 准连续Domain 代数sL-Domain Zs-相容连续偏序集 对偶等价
分类号: O153.1
类 型: 硕士论文
年 份: 2006年
下 载: 42次
引 用: 0次
阅 读: 论文下载
 

内容摘要


Domain理论为计算机程序设计语言的指称语义学奠定了数学基础。其中序与拓扑相互结合、相互作用是这一理论的一个基本特征。正是这一特征使Domain理论成为格上拓扑学研究者感兴趣的领域。到目前为止,一些学者对连续Domain、准连续Domain、sL-Domain和Z-连续偏序集等作了较为深入的研究。在此基础上,本文进一步讨论了准连续Domain的性质,给出了有界完备准连续Domain上稳定映射的等价刻画,子代数sL-Domain与投射对之间的关系,以及Z_S-相容连续偏序集的若干范畴性质等。主要内容如下: 第一章 给出了全文将要用到的Domain与范畴的概念和结果等预备知识。 第二章 研究由偏序集生成的自由Dcpo与自由并完备格,由并半格生成的强自由Dcpo与强自由并完备格。分别给出了它们是代数Domain的条件。 第三章 研究准连续Domain和代数sL-Domain。给出了准连续Domain的乘积、商和子对象以及有界完备准连续Domain的结构和性质,并且刻画了有界完备准连续Domain上的稳定映射。讨论了子代数sL-Domain与投射对之间的关系。 第四章 研究Z_S-相容集系统和它的一个范畴特征。引入了Z_S-相容连续偏序集的概念,讨论了Z_S-相容连续偏序集的一系列性质,得到Z_S-相容完备偏序集是Z_S-相容连续偏序集当且仅当它的Z_S-相容闭集格是一个完全分配格且它有一步闭包。证明了Z_S-相容连续偏序集范畴对偶等价于完全分配格范畴的一个满子范畴。

全文目录


相似论文

  1. 拟Z-代数domain,O153.1
  2. 连续Domain的基数函数与若干Domain范畴的笛卡尔闭性,O154
  3. 连续Domain理论及其相关问题的研究,O153.4
  4. 拟超连续Domain与拟超连续格,O189.1
  5. 顶点代数发展及在镜像对称中的应用的综述,O153
  6. 软环理论研究,O153.3
  7. 逆半环上同余的刻画,O153.3
  8. 强Raney偏序集与HC-偏序集的若干性质,O153.1
  9. 拟AP(AGP)-内射模的自同态环的若干研究,O153.3
  10. 素环上的导子及广义导子,O153.3
  11. 二代数与结合代数,O153
  12. 一些代数整数环的性质与计算问题,O153.3
  13. 模的w-相对性研究,O153.3
  14. 关于φ-投射模,φ-内射模与φ-平坦模,O153.3
  15. 双重半伪补Ockham代数及其他,O153.2
  16. 关于有限域中各向异性角的极值问题,O153.4
  17. KLEIN四元群上的MAJID代数,O153.3
  18. 重复代数的倾斜模及其应用,O153.3
  19. 点化余代数的Taft-Wilson定理的推广,O153.3
  20. 格蕴涵代数及其与相关逻辑代数的关系研究,O153.1
  21. 关于模上赋值的分解,O153.3

中图分类: > 数理科学和化学 > 数学 > 代数、数论、组合理论 > 抽象代数(近世代数) > 偏序集合与格论
© 2012 www.xueweilunwen.com