学位论文 > 优秀研究生学位论文题录展示
无界域上一类非自治反应扩散系统的渐近行为的研究
作 者: 朱凯旋
导 师: 谢永钦
学 校: 长沙理工大学
专 业: 应用数学
关键词: 非自治反应扩散方程 一致吸引子 渐近紧 广义绝对连续 无界域
分类号: O175
类 型: 硕士论文
年 份: 2011年
下 载: 17次
引 用: 0次
阅 读: 论文下载
内容摘要
本文主要研究如下一类反应扩散方程在无界域上的解的渐近行为:其中g∈Lloc2(R,L2(Rn)),u(x,t)是未知函数,f满足如下假设:其中μ0,α1,α2,κ1,κ2为正常数.对无界域上非自治反应扩散方程的解过程的渐近行为的研究主要存在两大困难.其一是由于无界域上Sobolev紧嵌入的缺乏,我们不能直接利用有界域上证明紧性的方法获得系统解过程族关于g∈∑的一致紧性;其二是依赖于时间的外力项9(x,t)仅假设是局部平移有界而不是平移紧,这样为我们证明一致吸引子的存在性并获得其结构带来比较大的困难.本文受文献[15,16,17]的启发,提出了一类新的非平移紧函数—广义绝对连续函数,并利用截断函数的方法克服了这两大困难,得到了解决这类问题的一般方法.在第三章我们提出了一类应用更广泛的非平移紧函数—广义绝对连续函数,然后讨论了该类函数的一些性质以及与其它函数类(平移有界函数、平移紧函数、正规函数等)之间的关系.在第四章利用截断函数的方法并结合广义绝对连续函数的性质证明了系统的解的一致渐近紧,从而得到了上述系统一致吸引子的存在性和结构.
|
全文目录
摘要 5-6 ABSTRACT 6-9 第一章 绪论 9-14 1.1 无穷维动力系统的发展概述 9-10 1.2 问题研究背景与研究现状 10-11 1.3 研究问题所涉及的理论、方法及其进展 11-14 第二章 预备知识 14-27 2.1 全局吸引子的相关概念及存在性判定定理 14-15 2.2 一致吸引子的相关概念及存在性判定定理 15-18 2.3 平移紧函数 18-20 2.4 几类非平移紧函数 20-25 2.4.1 正规(normal)函数 20-21 2.4.2 条件(C~*)函数和正规条件(C~*)函数 21-25 2.5 符号说明 25-27 第三章 一类新的非平移紧函数的研究 27-31 3.1 广义绝对连续函数 27-31 第四章 一致吸引子的存在性及其结构 31-40 4.1 解得存在唯一性 31-32 4.2 有界吸收集的存在性 32-36 4.3 渐近先验估计与一致吸引子的存在性 36-40 结论 40-41 参考文献 41-45 致谢 45-47 附录 (攻读学位期间发表论文目录) 47
|
相似论文
- 一类非自治波动方程一致吸引子存在性的研究,O175
- 无界域上部分耗散反应扩散系统布局吸引子的存在性,O175.29
- 一类非线性四阶波动方程Cauchy问题的整体吸引子,O175.29
- 基于粗糙集理论的图像分割方法研究,TP391.41
- 具非线性阻尼项Berger型方程的长时间行为,O175.8
- 一类随机非经典反应扩散方程渐近行为的研究,O175
- 反应扩散方程一致吸引子存在性研究,O175
- 一类非线性发展方程的长时间行为,O175.29
- 可压Navier-Stokes-Possion方程的整体轨道的渐近紧性,O175.24
- 语用视角下广告语篇的实据性分析,H030
- 三类S-分布时滞递归神经网络的全局动力行为研究,TP183
- 非自治时滞抛物型方程动力学研究,O175.29
- 非自治及随机时滞抛物型方程的吸引子,O175.29
- 两类偏微分方程吸引子的存在性,O175.2
- Brinkman-Forchheimer方程的吸引子,O19
- 滨水居住区景观规划研究,TU985.125
- 城与乡:小说里的人生界域,I207.42
- Stein流形上Cauchy型积分的Plemelj公式与有界域上的(?)—方程,O174.56
- Hermitian对称空间,O152.5
- 正规Siegel域的迷向子群,O152.1
中图分类: > 数理科学和化学 > 数学 > 数学分析 > 微分方程、积分方程
© 2012 www.xueweilunwen.com
|