学位论文 > 优秀研究生学位论文题录展示
两个数学物理反问题的Landweber迭代正则化方法
作 者: 李中锋
导 师: 傅初黎
学 校: 兰州大学
专 业: 基础数学
关键词: 不适定问题 反向热传导问题 Helmholtz方程Cauchy问题 Landweber迭代方法 误差估计 正则化参数
分类号: O241.82
类 型: 硕士论文
年 份: 2010年
下 载: 44次
引 用: 0次
阅 读: 论文下载
内容摘要
全文目录
摘要 4-5 abstract 5-7 第一章 引言 7-12 §1.1 问题简介 7-10 §1.2 Landweber正则化方法简介 10-11 §1.3 本文的主要工作 11-12 第二章 求解含对流项的反向热传导问题的Landweber迭代方法 12-26 §2.1 加权空间定义 12-13 §2.2 问题(1.3)的不适定分析 13-14 §2.3 误差估计 14-19 §2.4 数值例子及数值实验 19-26 第三章 求解Helmholtz方程Cauchy问题的Landweber迭代方法 26-41 §3.1 H~P空间定义 26 §3.2 问题(1.4)的不适定分析 26-27 §3.3 误差估计 27-33 §3.4 数值例子及数值实验 33-41 参考文献 41-45 主要成果 45-46 致谢 46
|
相似论文
- 永磁直线同步电动机的零相位鲁棒跟踪控制研究,TM341
- 自适应数据融合技术研究,TP202
- H-R,H-P自适应边界元方法及误差估计,O343
- Banach空间中线性算子Moore-Penrose度量广义逆的扰动分析,O177.2
- 发展方程保辛和多辛结构数值格式,O241.82
- 热传导方程的一种自适应有限元算法,O241.82
- 抛物型和双曲型方程的有限体积元法,O241.82
- 扩充的一般混合变分不等式迭代算法的研究,O178
- 弹性力学混合元新格式,O241.82
- 基于奇异系统与变分原理的正则化方法及应用,O175.2
- 一类热源识别反问题的正则化方法,O175.2
- 两类非齐次不适定问题的正则化,O177.1
- 解第一类算子方程的一种正则化方法及应用,O177
- 一类非线性神经传播方程的非协调有限元分析,O241.82
- 细菌模型非协调有限元的收敛性分析,O241.82
- 曲边区域上二阶椭圆问题的四边形元自适应网格逼近,O241.82
- N-S方程迎风非线性Galerkin有限元算法及其后验误差估计,O241.82
- Cahn-Hilliard方程的有限元分析,O241.82
- 定常对流扩散方程的一种新型差分格式,O241.82
- 关于一个二阶非线性微分方程组的可解性,O241.7
- 非饱和土壤水流中的控制释放耦合问题的有限元方法,O241.82
中图分类: > 数理科学和化学 > 数学 > 计算数学 > 数值分析 > 微分方程、积分方程的数值解法 > 偏微分方程的数值解法
© 2012 www.xueweilunwen.com
|