学位论文 > 优秀研究生学位论文题录展示

双马来酰亚胺改性体系相分离的几个物理和化学问题

作 者: 刘小云
导 师: 李善君
学 校: 复旦大学
专 业: 高分子化学与物理
关键词: 高分子科学 相分离行为 固化温度 改性双马树脂 相结构 凝胶化 固化过程 固化反应机理 复旦大学 诱导相分离
分类号: TQ323.7
类 型: 博士论文
年 份: 2006年
下 载: 253次
引 用: 1次
阅 读: 论文下载
 

内容摘要


本论文分别采用聚醚砜(PES)和氰酸酯改性双马来酰亚胺树脂(BMI),研究了改性体系的几个物理和化学问题。第一部分研究了聚醚砜改性双马树脂体系的反应诱导相分离行为,讨论PES用量、PES分子量和固化温度等对相分离的影响、改性体系相分离过程中的粘弹性效应、以及化学流变学行为和临界凝胶化转变现象。第二部分研究了双酚A型氰酸酯树脂改性二苯甲烷型双马来酰亚胺树脂体系中的固化反应机理及其对改性体系结构的影响。在研究PES用量对改性体系的相结构的影响时,发现随PES含量的增加依次出现分散相、双连续相和相反转结构,力学性能测试结果表明,加入PES后可大幅度提高改性体系的拉伸强度和断裂伸长率,而模量只有轻微的下降。与未改性体系相比,改性体系的固化反应速率随聚醚砜加入量的增加而下降,呈现明显的聚合物稀释效应。研究PES分子量的影响时,发现使用高分子量PES更容易得到PES作为连续相的结构。当使用的高分子量PES时,仅用10wt%的用量就可以得到相反转结构,而使用低分子量时则需要12.5wt%的PES。力学测试表明在同样的用量下,高分子量PES对双马体系的增韧效果差于低分子量PES。使用高分子量PES的改性体系,其固化反应转化率和固化反应活化能略高于低分子量PES改性体系。固化温度对改性体系的宏观相结构几乎没有影响,但是高的固化温度下,固化转化率高,相区尺寸更小。光散射研究结果表明,在一定的PES用量区间,改性体系均发生聚合诱导SPINODAL相分离,光散射矢量q_m随时间呈指数衰减并可用MAXWELL粘弹性方程拟合,从而得到各体系在不同固化温度下的的松弛时间τ。将松弛时间τ用WLF方程拟合,实验结果与拟合曲线能很好的吻合。从拟合结果可得参考温度T_s,其值比未固化改性体系的玻璃化转变温度高28K~40K,表明PES改性双马体系的相分离过程受到粘弹性效应的影响。化学流变行为的研究发现改性体系的相结构演化会影响体系在固化过程中的化学流变行为。结合光散射实验等技术,确定了改性体系在固化过程中其复合粘度增长的转折点对应的是相分离发生点。改性体系在相分离发生时,如果形成PES分散相结构,则体系的复合粘度会突然降低、然后才持续增长;而改性体系在相分离发生时形成PES反转相结构时,则复合粘度持续增加。对于PES含量低的改性体系,在等温固化反应的早期,其复合粘度要低于PES含量高的改性体系,但是后者的复合粘度增加的速率更快。发现连续相的组成不同,造成了改性体系等温固化过程中复合粘度的增长对固化温度出现不同的依赖性。不同PES分子量影响体系相分离发生的时间早晚,而对复合粘度的增长影响较小。改性体系在固化过程中会依次出现两次临界凝胶化转变,第一个临界凝胶化转变点对应改性体系相结构的固定,而第二次临界凝胶化转变点则是双马树脂的化学凝胶化。第一次临界凝胶化转变发生时的转化率与固化温度有关,而第二次临界凝胶化转变发生时,其转化率几乎固定(约0.54),与固化温度无关。在第一个临界凝胶化转变处,其临界松弛指数约为0.66,符合Zimm模型的预测,而第二个临界凝胶点处的松弛指数值因受相分离的影响而急剧降低,只有0.33左右。随改性体系中PES含量增加,松弛指数值减小;而固化温度升高,则松弛指数值增大。论文的第二部分研究了双酚A型氰酸酯树脂改性二苯甲烷型双马树脂体系中的固化反应机理。长期以来在这个问题上发生的争论比较多,也出现了支持不同理论的各种实验现象,而本工作则从催化剂的角度对这种争论给出了合理的解释。发现在氰酸酯/双马树脂体系中,其固化反应机理与体系是否使用催化剂以及使用的催化剂种类有关:在不加催化剂,或者加入壬基酚(氰酸酯聚合催化剂)时,氰酸酯树脂和双马树脂按照各自的聚合反应机理进行自聚合反应,生成两种不同的热固性高分子网络结构,体系表现出两个玻璃化温度,红外图谱上也显示出存在聚氰酸酯结构;而加入甲基苯磺酸作为催化剂后,氰酸酯和双马树脂之间发生共聚合反应,固化后体系只有一个玻璃化温度,红外图谱表明不存在聚氰酸酯结构。因此,长期以来关于氰酸酯和双马共混物反应机理的争论,是由于忽略了体系中所存在的微量催化剂所致。

全文目录


中文摘要  5-7
ABSTRACT  7-10
第一部分 聚醚砜改性双马树脂体系  10-92
  第一章 引言  10-31
    1.1 双马来酰亚胺树脂及其增韧改性  10-16
      1.1.1 BMI的内扩链  12
      1.1.2 BMI的外扩链  12-13
      1.1.3 与烯丙基化合物共聚增韧  13-14
      1.1.4 与环氧树脂共混改性  14
      1.1.5 与氰酸酯树脂共混改性  14-15
      1.1.6 与弹性体或热塑性塑料共混改性  15-16
    1.2 热塑性改性热固性体系的相分离研究  16-26
      1.2.1 高分子共混体系相分离理论  17-19
      1.2.2.反应诱导相分离的提出和机理  19-20
      1.2.3.反应诱导相分离研究进展  20-23
      1.2.4.反应诱导相分离中的粘弹性效应  23-26
    1.3 化学流变学及凝胶化  26-29
      1.3.1 化学流变学  26-27
      1.3.2 凝胶化及凝胶理论  27-29
    1.4 第一部分工作的研究背景和主要内容  29-31
  第二章 实验部分  31-36
    2.1 试剂  31
    2.2 共混物的制备和固化  31-32
    2.3 扫描电镜(SEM)  32
    2.4 力学性能测试  32
    2.5 差示扫描量热仪(DSC)  32-33
      2.5.1 玻璃化温度的测定  32
      2.5.2 固化转化率的测定  32-33
      2.5.3 固化反应活化能的测定  33
    2.6 化学凝胶点的测定  33
    2.7 时间分辨光散射  33-35
    2.8 流变测试  35-36
  第三章 PES/双马改性体系的反应诱导相分离及影响因素  36-55
    3.1 PES含量对固化过程和相分离的影响  36-45
      3.1.1 转化率与固化动力学  36-39
      3.1.2 改性体系的相结构  39-41
      3.1.3 光散射研究  41-43
      3.1.4 力学性能测量  43-45
    3.2 PES分子量对相分离的影响  45-51
      3.2.1 转化率与固化动力学  45-48
      3.2.2 改性体系的相结构  48-49
      3.2.3 力学性能测量  49-51
    3.3 固化温度对相分离的影响  51-54
      3.3.1 不同固化温度下的转化率  51-52
      3.3.2 改性体系的相结构  52-54
    3.4 本章小结  54-55
  第四章 PES/双马改性体系固化过程中的化学流变行为  55-66
    4.1 PES含量对改性体系流变行为的影响  55-58
    4.2 固化温度对改性体系化学流变行为的影响  58-63
    4.3 PES分子量对改性体系流变性能的影响  63-65
    4.4 本章小结  65-66
  第五章 PES/双马改性体系相分离过程中的粘弹性效应  66-80
    5.1 PES改性体系在不同固化温度下的光散射实验  67-74
      5.1.1 PES/双马(15wt/85wt)体系  67-70
      5.1.2 PES/双马(12.5wt/87.5wt)体系  70-72
      5.1.3 PES/双马(10wt/90wt)体系  72-74
    5.2 WLF方程在PES改性体系中的应用  74-78
    5.3 T_s的物理意义  78-79
    5.4 本章小结  79-80
  第六章 PES/双马改性体系固化过程中的临界凝胶化转变  80-92
    6.1 改性体系等温固化中的临界凝胶化转变现象  80-83
    6.2 临界凝胶化转变点处的反应转化率  83-85
    6.3 固化温度对改性体系临界凝胶化转变的影响  85-89
    6.4 PES含量对改性体系临界凝胶化转变的影响  89-90
    6.5 本章小结  90-92
第二部分 氰酸酯改性双马树脂体系  92-110
  第七章 引言及实验  92-98
    7.1 氰酸酯改性双马体系的固化反应  92-94
    7.2 广义二维相关分析技术  94-95
    7.3 实验和试剂  95-98
      7.3.1 试剂  95-96
      7.3.2 共混物的制备  96
      7.3.3 红外(FT-IR)  96-97
      7.3.4 广义红外二维相关分析  97
      7.3.5 动态机械性能(DMA)  97
      7.3.6 固化反应活化能的测定  97-98
  第八章 氰酸酯/双马改性体系固化反应机理研究  98-110
    8.1 DMA分析  98-100
    8.2 DSC研究  100-101
    8.3 FTIR研究  101-103
    8.4 广义二维相关分析  103-108
    8.5 改性体系的固化动力学  108
    8.6 回顾和展望  108-109
    8.7 本章结论  109-110
主要结论和展望  110-112
参考文献  112-126
致谢  126-127
作者简历  127
攻读博士学位期间完成的论文  127-128

相似论文

  1. 利用聚合物整体型模板制备大孔无机功能材料,O631.3
  2. 壳聚糖双层膜的制备及性能研究,R318.08
  3. 双酚A甲醛酚醛环氧树脂的制备和性能研究,TQ323.5
  4. 高精度杂化密度泛函方法研究,O641.1
  5. 人红细胞膜上Protein 4.2与其它蛋白质的相互作用研究,Q26
  6. 1、PPARγ激动剂保护足细胞损伤所致FSGS的机制研究 2、残余肾小鼠模型中整合素β6缺失不改变间质纤维化但加重小球硬化的机制研究,R692
  7. 光功能稀土配合物的分子设计、合成及其构效关系的研究,O641.4
  8. NRG-1诱导ErbB异源二聚体间反式磷酸化及其对下游信号通路调控的研究,Q26
  9. 雌二醇鼻腔给药脑靶向制剂的研究,R94
  10. 沸石生长过程中分子反应与粒子聚集机理的理论研究,O611.3
  11. 淀粉基API木材胶粘剂及其固化与老化机理的研究,TQ432.2
  12. 高性能含氮阻燃环氧树脂/固化剂的合成、固化反应及结构性能与应用研究,TQ433
  13. 低甲醛释放脲醛树脂固化反应历程研究,TS653
  14. 氟化丙烯酸酯共聚物表面结构的形成与构建,O631
  15. 煤制酚醛树脂的制备及其在铸造中的应用研究,TQ323.1
  16. 稀土掺杂ZnTe纳米薄膜制备及特性研究,O484
  17. 光谱法研究SBS在癸烷溶液中的自组装,O631.5
  18. 聚丙烯酸—铁(Ⅲ)体系的电控可逆氧化还原凝胶/溶液转变及其临界行为,O631.3
  19. 悬浮法POE-g-SAN的合成及其增韧SAN树脂的研究,TQ325.14
  20. 聚合物共混体系相形态演变过程与流变性质的研究,TQ311

中图分类: > 工业技术 > 化学工业 > 合成树脂与塑料工业 > 缩聚类树脂及塑料 > 聚酰亚胺类及塑料
© 2012 www.xueweilunwen.com