学位论文 > 优秀研究生学位论文题录展示
生物膜形状的理论研究
作 者: 郭坤琨
导 师: 杨玉良
学 校: 复旦大学
专 业: 高分子化学与物理
关键词: 自洽场理论 膜曲面弹性理论 离散空间变分法 耗散粒子动力学 生物膜 相分离 锚泊 多层囊泡
分类号: Q73
类 型: 博士论文
年 份: 2005年
下 载: 464次
引 用: 1次
阅 读: 论文下载
内容摘要
生物膜结构不仅是细胞结构的组织形式,也是生命活动的主要结构基础。许多生命过程,如能量转换、物质运输、信息识别与传递、细胞发育与分化,以及神经传导、激素作用等都与生物膜有密切关系。然而,由于真实的细胞膜十分复杂,人们必须寻找合适的模型。幸运的是,理论和实验均表明由两亲性分子所形成的囊泡(vesicle)是细胞膜最为简单有效的模型。因此,本论文围绕生物膜开展了四个方面的研究工作:锚泊有聚合物链的囊泡;刚棒/柔性高分子锚泊流体膜;多层囊泡的复杂形状;耗散粒子动力学对多组分膜相分离的动力学研究。第一部分:锚泊聚合物链的囊泡。生物膜通常被蛋白质、胆固醇、糖类等生物大分子所“修饰”。作为生物膜的简化模型,聚合物链锚泊囊泡的研究具有极其重要的生物学意义。我们将多组分聚合物体系的自洽平均场理论和囊泡的膜弯曲弹性理论拓展至聚合物链锚泊囊泡体系。我们引入聚合物链不能穿透囊泡膜的限制条件,考虑了高分子链段和囊泡膜的相互作用,以及高分子链段和溶剂的相互作用,重新推导出新的膜平衡的形状方程。聚合物锚泊囊泡和单纯囊泡体系的主要差别是,由于囊泡膜对聚合物链的几何空间限制,聚合物链段对囊泡表面施加不均匀的熵压,诱发了聚合物锚泊囊泡的不对称性。当高分子链段和囊泡表面存在相互作用时,聚合物链不仅对囊泡表面施加外压,还改变了囊泡的表面张力。而压力和表面张力的改变大小和相互作用参数、聚合物链段的浓度分布息息相关。当囊泡膜和高分子链段的相互作用从排斥变为强吸附时,聚合物的浓度分布也实现从“mushroom”至“pancake”的转变。溶剂对囊泡形状的影响不显含在我们推导的形变方程中,而是通过改变聚合物链段的浓度分布来实现囊泡形状的改变。聚合物链对囊泡的影响随着囊泡的弯曲刚性的降低而变得显著。锚泊聚合物链的链长对囊泡的形状的影响很小,而在高分子链段和囊泡膜存在相互作用时,锚泊聚合物链链长的变化则对囊泡的形状有着显著的影响。这是因为囊泡膜表面高分子链段的浓度分布受锚泊高分子链链长、膜和链段相互作用强度、锚泊高分子链数目等参数的共同影响。不同于聚合物锚泊流体膜体系,聚合物锚泊囊泡形状的变化要考虑囊泡的全局因素,因此囊泡形状的变化非常复杂,难以用单纯囊泡的对称性给以描述。我们利用新拓展的理论研究了聚合物锚泊囊泡形状的变化。此外,我们的理论还可以拓展到多组分、不同拓扑结构的聚合物链锚泊囊泡体系,从而为将来研究细胞的生命活动提供一种方法。第二部分:刚棒/柔性高分子锚泊的流体膜。我们依然运用高分子的自洽场理论和膜弹性理论结合的方法,研究柔性链或刚棒锚泊流体膜的复合体系。由于膜的不可穿透性,减少了高分子链的活动空间,为了使高分子获得更高的构象熵,膜发生弯曲远离高分子。在锚泊点附近,柔性链和刚棒浓度分布不同,导致膜在锚泊点附近变形的趋势也不同。尤为重要的是,由于刚棒的取向和膜曲率的连续性之间的矛盾,导致刚棒和膜之间存在有限距离。膜和高分子之间相互吸附作用会影响高分子的行为:对于柔性链,吸附强度从弱到强,其构象分布发生从“mushroom”至“pancake”的转变;对于刚棒的分布则发生“扇形”至“锥形”的转变,且“扇形”的半径和刚棒的长度保持一致。如果膜和柔性链之间没有相互作用时,链长的增加不会对膜对形状产生明显的作用,但当膜和柔性链之间有吸附作用时,链长的增大会加剧膜的形变。而对于刚棒,甚至在膜和刚棒没有任何相互作用时,由于其在膜上的覆盖面积和链长呈正比,随着链长的增加,增大了链的末端距,刚棒在膜施加熵压的接触点增大了,导致膜会随着链长的增加而进一步远离刚棒。此外,膜本身的弯曲刚性和表面张力也会影响膜的形变。第三部分:多膜囊泡的复杂形状。一些细胞器,如线粒体等,均具有双层膜的构造。对于含有双层膜构造的细胞器,细胞器外、双层膜间区和双层膜内各区的压力差别将导致非常复杂的形态。为了对这类细胞器的形态提供理论模型,我们采用离散空间变分的方法研究了多层囊泡的复杂形状问题,即单层囊泡置于可变形的受限环境下的形状。我们主要讨论了双层囊泡之间的面积比、弯曲刚性模量、各部分几何空间压力比、以及静电相互作用对多层囊泡的复杂形状的影响。当内膜的面积大于外膜面积时,内膜主要以皱褶的形式存在于外膜空间;当内膜面积小于外膜面积时,每层膜的形状和其所处空间的势差(压力)有关,如果膜所包围的空间的压力大于此膜外部空间的压力,膜的形状大部分以圆的形式存在。外膜和内膜的弯曲刚性模量在各部分空间压力不同时,其对多层囊泡形状的影响也不同。不均匀的长程静电相互作用的存在可使内膜形成的管状皱褶均匀分布在外膜所包围的几何空间。双层囊泡根据各部分自由能的贡献的大小调整外膜和内膜形状,以及每层囊泡所包围空间体积。这些结果将对于理解诸如线粒体之类细胞器的形态具有积极的意义。第四部分:耗散粒子动力学研究多组分膜的相分离过程。在适当的温度或其他条件下,两亲性脂类分子通常不均匀地分布在双分子层生物膜中,膜的侧向上存在着复杂的微区,这些微区在膜内移动,与细胞中的蛋白质输送及细胞内信息传递等功能的实现有密切关系。我们通过介观的模拟方法—耗散粒子动力学(DPD)的方法研究了单组分聚集体的形成过程和条件,结果表明可得到各种聚集体,如胶束、柱状、球形的囊泡;用同样的方法,我们还研究了多组分膜相分离过程中,聚集体会表现出两亲性分子的扩散、微区之间的合并以及囊泡形状的变化(出芽和分裂)等行为。本论文中,采用耗散粒子动力学方法对多组分膜体系的形变和相分离的研究只是一个初步的探索,为进一步深入研究囊泡在受限环境下的流动行为、囊泡和基板相互作用以及囊泡和囊泡相互作用等提供有益的启示。
|
全文目录
摘要 14-16 Abstract 16-19 第一章 绪论 19-43 §1.1 引言 19-20 §1.2 曲面模型 20-27 §1.2.1 经典模型中的局部曲面能 20-22 §1.2.2 平膜和持久长度 22-23 §1.2.3 浓度差异和曲率的耦合 23-26 §1.2.4 面积差弹性模型(Area Difference Elasticity model) 26 §1.2.5 自发曲率模型(Spontaneous Curvature model) 26-27 §1.2.6 耦合自发曲率的面积差模型 27 §1.3 模拟方法在生物膜研究中的应用 27-30 §1.3.1 蒙特卡罗方法(Monte Carlo) 27-29 §1.3.2 分子动力学(Molecular Dynamics) 29 §1.3.3 耗散粒子动力学(Dissipative Particle Dynamics) 29-30 §1.4 吸附和曲面的变形 30-32 §1.5 流场中的囊泡动力学 32-33 §1.6 具有复杂组分的生物膜 33-35 §1.7 本论文的研究目的、内容和意义 35-38 参考文献 38-43 第二章 自洽平均场理论 43-58 §2.1 引言 43 §2.2 统计力学基础 43-48 §2.2.1 密度算符 43-44 §2.2.2 组分α自身的Hamiltonian,H_α~0 44-45 §2.2.3 体系相互作用Hamiltonian,H_(int) 45-46 §2.2.4 配分函数 46-47 §2.2.5 Hubbard-Stratonovich变换 47-48 §2.3 自洽平均场 48-50 §2.3.1 鞍点近似 48-50 §2.4 SCMFT的计算方法 50-52 §2.5 SCMFT的应用 52-55 §2.5.1 聚合物/纳米粒子复合体系 53-54 §2.5.2 聚合物/生物膜复合体系 54-55 参考文献 55-58 第三章 锚泊聚合物链的囊泡形状及其转变 58-87 §3.1 引言 58-60 §3.2 理论和方法 60-66 §3.2.1 自洽场理论 60-64 §3.2.2 参数约化 64-65 §3.2.3 数值计算 65-66 §3.3 结果和讨论 66-81 §3.3.1 固定囊泡的表面张力 66-70 §3.3.2 固定囊泡的面积 70-81 §3.4 结论 81-82 §3.5 附录 82-85 §3.5.1 附录A.自由能泛函对形状的法向变分 82-83 §3.5.2 附录B.轴对称情况下的形状方程 83-85 参考文献 85-87 第四章 柔性高分子/刚棒锚泊的流体膜 87-111 §4.1 引言 87-88 §4.2 理论和方法 88-95 §4.2.1 自洽场理论 88-93 §4.2.2 参数约化 93-95 §4.2.3 数值计算 95 §4.3 结果和讨论 95-106 §4.3.1 柔性链锚泊流体膜 96-100 §4.3.2 锚泊有刚棒高分子的流体膜 100-104 §4.3.3 膜的张力和弯曲刚性的影响 104-106 §4.4 结论 106-107 §4.5 附录 107-109 §4.5.1 附录A.几种特殊形状的曲率 107-109 参考文献 109-111 第五章 多层囊泡的复杂形状 111-139 §5.1 前言 111-112 §5.2 理论与方法 112-118 §5.3 结果与讨论 118-134 §5.3.1 内膜面积的影响 118-119 §5.3.2 自发曲率的影响 119-121 §5.3.3 外膜弯曲刚性的影响 121-128 §5.3.4 内膜弯曲刚性的影响 128-131 §5.3.5 内膜静电相互作用的影响 131-134 §5.4 结论 134 §5.5 附录 134-137 §5.5.1 附录A.基本公式和定义 134-135 §5.5.2 附录B.变量的定义 135-137 参考文献 137-139 第六章 耗散粒子动力学研究多组分膜相分离动力学 139-156 §6.1 前言 139-141 §6.2 理论与方法 141-147 §6.2.1 理论 141-146 §6.2.2 模拟体系 146-147 §6.3 结果与讨论 147-152 §6.3.1 单组分两亲性分子形成聚集体 147-149 §6.3.2 双组分膜的相分离动力学 149-152 §6.4 结论 152 §6.5 附录 152-154 §6.5.1 附录A.粘弹性流体 152-154 参考文献 154-156 简历 156-157 攻读博士学位期间发表论文情况 157-158 致谢 158-159
|
相似论文
- 荧光假单胞菌7-14生物膜突变株的筛选及tatC基因的克隆与功能初析,S432.4
- 植物源细菌群体感应抑制因子的筛选及其对生物膜形成的影响,Q93
- 产多糖根瘤菌Q32对硅酸盐矿物的风化作用及其机制研究,Q93
- 饥饿期粪肠球菌生物膜的形成及次氯酸钠溶液对其作用研究,R780.2
- 饥饿期粪肠球菌生物膜形成相关毒力因子的表达及两种根管常用药物对其作用研究,R780.2
- 生物膜中耐酸因子F-ATPase的表达与龋病的关系,R781.1
- 海藻酸钠—壳聚糖生物膜在引导骨再生中的应用研究,R318.08
- 高亲水性聚氨酯的合成和性能研究,TQ323.8
- 壳寡糖对变链菌生物膜脱落效果的实验研究,R780.2
- 热固性环氧微球的制备、表征及其表面功能化的研究,O631.3
- 热致相分离法超高分子量聚乙烯/高密度聚乙烯微孔膜的制备、结构和性能的研究,TQ325.12
- 复三维电极—生物膜反应器脱除饮用水中硝酸盐的试验研究,X703
- 羊毛角蛋白的提取及其应用,TS195.56
- 好氧颗粒污泥培养及其对HMX生产废水处理的研究,X703
- PHBV纳米纤维支架的制备及其性能研究,R318.08
- 口腔细菌在渗透树脂表面动态粘附的SEM研究,R783
- 新生儿重症监护病房多重耐药鲍曼不动杆菌耐药机制及同源性研究,R446.5
- 仿生细胞膜技术研究中药活性成分,R284
- 无定形氧化硅的相分离和纳晶硅镶嵌二氧化硅的制备,TN304.1
- Pd填隙和化学学Pd对La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3电磁输运特性的影响,O482.5
- A/O一体化曝气生物技术处理污水效率研究,X703
中图分类: > 生物科学 > 分子生物学 > 生物膜的结构和功能
© 2012 www.xueweilunwen.com
|