学位论文 > 优秀研究生学位论文题录展示

组织酶催化光学分析系统及化学发光新体系应用研究

作 者: 王周平
导 师: 章竹君
学 校: 西南师范大学
专 业: 分析化学
关键词: 组织酶催化 生物发光 光度/荧光/化学发光分析 流动注射分析 药物-蛋白相互作用 药物
分类号: O657.3
类 型: 博士论文
年 份: 2004年
下 载: 216次
引 用: 0次
阅 读: 论文下载
 

内容摘要


近年来,基于分离纯化酶的传统酶法分析日益受到新型生物催化活性材料如微生物、动植物组织、细胞、受体等,尤其是动植物组织的挑战,催化活性稳定、寿命长、取材容易、价格低廉等特性使得这类组织酶催化生物传感器/分析系统越来越受到人们的重视,相关研究成为酶法分析和生物传感器研究领域的一大热点。生物发光菌历来在食品安全、环境监测等方面发挥着重要作用,研究发现新型生物发光菌、构建新型无试剂型生物发光传感器是这一研究领域的主要任务之一。化学发光分析因其灵敏度高、线性范围宽、分析速度快、仪器设备简单便宜以及易于实现自动化和连续分析等特点,吸引着众多分析工作者的广泛关注,已被成功地应用于生物技术、药学、分子生物学、临床医学和环境检测等领域中许多重要的无机和有机物质的分析。 本研究工作主要集中于三个方面,一方面是将组织酶催化反应与光学检测系统(光度、荧光、化学发光)在线偶合,建立了一系列基于组织酶催化的流动注射光学分析系统;另一方面是发现了新型生物发光真菌-蜜环菌,对其气相和液相生物发光行为进行研究,初步构建了一种非常简单的无试剂型气体氧和溶解氧生物传感器;第三方面是建立新的化学发光分析方法,研究在线微透析、微超滤与其结合应用于药物-蛋白相互作用 的学位论文">药物-蛋白相互作用研究和将其应用于实际样品分析的可行性。 第一章为组织酶催化光学分析系统研究。1.1部分概述了组织酶催化分析研究的相Southwest Normal University, Doetor Thesis一Z.Wang(200126)关进展. 1 .2部分研究发现富含多酚氧化酶的蘑菇组织可催化氧化儿茶酚及儿茶酚胺类物质转化为有色的醒类和红类物质,这些产物的吸收峰较之原物质吸收峰明显红移。基于此,采用非常简单的固定化方法并结合流动注射技术,建立了一种简单、灵敏、准确、廉价的无试剂型儿‘茶酚、盐酸异丙肾上腺素、盐酸多巴胺流动注射紫外一可见分光光度分析系统。该系统对上述几种物质具有良好的响应,儿茶酚、盐酸异丙肾上腺素、盐酸多巴胺物质浓度在一定范围内与吸光度分别呈良好的线性关系(儿茶酚,2x10.6一l、10.3gmr’;盐酸异丙肾上腺素,4灰20一6一sxzo.‘9 ml‘’;盐酸多巴胺,4xlo“6一sxlo‘4gml一’)。对三种物质的检测限(3a)分别为:4x 10一,9 ml一’,1 .3xlo一‘gml一‘,z.oxlo一6gml‘’。将该系统用于药物制剂中盐酸异丙肾上腺素、盐酸多巴胺含量的测定,所得结果与药典标准方法测得结果一致。同时用蘑菇组织制作的反应器具有制作简单、高酶活、使用寿命长、易更换和成本低廉等优点。 1,3部分研究发现富含多酚氧化酶的蘑菇组织可替代纯多酚氧化酶催化氧化异丙肾上腺素使其转化为异丙肾上腺素红,该物质在碱性条件下可进一步发生重排而成为具有强烈荧光特性的三轻基叫垛类物质。基于此将蘑菇组织催化氧化异丙肾上腺素反应与流动注射荧光光度分析技术结合,建立了一种非常简单、灵敏和高选择性的异丙肾上腺素蘑菇组织催化氧化一流动注射荧光分析系统。在实验选定条件下,荧光强度与异丙肾上腺素浓度在 3xlo一8一1又10一,9 ml一’范围内呈良好的线性关系,检测限为1 .0x10一8 9 mrl(3。),相对标准偏差小于5%(n二11)。将该系统初步应用于药物制剂中异丙肾上腺素含量的测定,所得结果与药典标准方法测得结果一致。采用流动注射技术同时解决了产物荧光不稳定、常规类似测定中需加入稳定剂等问题而无须考虑反应动力学因素。用蘑菇组织制作的反应器同样具有制作简单、高酶活、使用寿命长、易更换和成本低廉等优点。没有氧化剂的引入,也符合当前绿色化学的潮流。 1.4部分构建了一种基于萝卜组织催化的流动注射化学发光谷氨酞胺分析系统。萝卜组织富含谷氨.酞胺酶,可替代纯谷氨酞胺酶定量催化谷氨酞胺生成氨的反应,将这一催化反应与NBS一二氯荧光素化学发光体系测定氨的反应在线偶合,使催化反应与化学发光检测反应在不同位置发生,既保证了二者反应都在最佳条件下进行,又使得所制作的组织反应器寿命大大延长。在实验选定的最佳条件下,化学发光强度与谷氨酞胺浓度在7x10一8一l、10一,gmr’范围内呈良好的线性关系,检测限为2.3、10一sgml一,(3。),相对标准偏差小于5%。将该系统应用于药物制剂、水样中谷氨酞胺含量的测定,结果令人满 2竺丝竺塑鱼竺些竺竺业丝竺竺卫些全圣丛些卫丝坐丝...一…~1「_…__……~_:煞少睽意。同时试验了将该系统用于生物体液中谷氨酸胺测定的可能性,标准加入实验表明该系统可成功用于血样中谷氨酞胺的检测,并具有监测谷氨酞胺类药物服用后血药浓度变化的潜能。 第二章为生物发光真菌.蜜环菌生物发光行为研究。2.1部分概述了生物发光的原理和相关研究进展。 2,2部分研究报道了一种天然生物发光真菌一蜜环菌的气相发光行为。结果显示在酸碱度、温度和培养基质适

全文目录


Abstract  15-23
Chapter 1 Tissue enzyme catalysis-based optical analytical systems  23-71
  1.1 Introduction  23-31
    1.1.1 Tissue-based biosensor  24-27
    1.1.2 Other analytical procedures based on tissue enzyme catalysis  27-29
    References  29-31
  1.2 A mushroom tissue-based flow through spectrophotometric system for the determination of catechol and catecholamines  31-43
    1.2.1 Introduction  31-33
    1.2.2 Experimental  33-35
      1.2.2.1 Reagents and solutions  33-34
      1.2.2.2 Apparatus  34
      1.2.2.3 Preparation of tissue reactor  34-35
      1.2.2.4 Procedures  35
    1.2.3 Results and discussion  35-41
      1.2.3.1 Selection of tissue material  35-36
      1.2.3.2 Absorption characteristics of the products  36-37
      1.2.3.3 Optimization of reaction conditions  37-38
      1.2.3.4 Analytical performance  38-39
      1.2.3.5 Selectivity and lifetime of the reactor  39
      1.2.3.6 Application  39-41
        1.2.3.6.1 Determination of isoprenaline hydrochloride  40
        1.2.3.6.2 Determination of dopamine  40-41
    1.2.4 Conclusion  41-42
    References  42-43
  1.3 A mushroom tissue-based flow injection fluorescence system for the determination of isoprenaline  43-56
    1.3.1 Introduction  43-46
    1.3.2 Experimental  46-48
      1.3.2.1 Reagents and Materials  46
      1.3.2.2 Apparatus  46-47
      1.3.2.3 Preparation of tissue reactor  47
      1.3.2.4 Procedure for calibration  47-48
      1.3.2.5 Procedure for pharmaceutical preparations  48
    1.3.3 Results and discussion  48-53
      1.3.3.1 Selection of tissue material  48
      1.3.3.2 Reaction and spectral characteristics  48-49
      1.3.3.3 Conditions for the system  49-51
        1.3.3.3.1 Effect of temperature  49
        1.3.3.3.2 Effect of pH  49-50
        1.3.3.3.3 Effect of concentration of NaOH  50
        1.3.3.3.4 Effect of flow rate  50-51
        1.3.3.3.5 Stability of reagents  51
      1.3.3.4 Performance of the proposed system  51
      1.3.3.5 Stability and lifetime of the system  51-52
      1.3.3.6 Selectivity of the system  52
      1.3.3.7 Application  52-53
    1.3.4 Conclusion  53-54
    References  54-56
  1.4 A palnt tissue-bascd flow injection chemiluminescnce system for glutamine  56-71
    1.4.1 Introduction  56-59
    1.4.2 Experimental  59-62
      1.4.2.1 Reagents and materials  59-60
      1.4.2.2 Apparatus  60
      1.4.2.3 Preparation of tissue reactor  60-61
      1.4.2.4 Procedure for calibration  61
      1.4.2.5 Procedure for pharmaceutical preparations  61
      1.4.2.6 Procedure for spiked human plasma  61-62
    1.4.3 Results and discussion  62-67
      1.4.3.1 Selection of tissue material of glutaminase  62
      1.4.3.2 Conditions for enzymatic reaction in plant tissue column and flow-injection system  62-65
        1.4.3.2.1 Effect of temperature on the tissue reactor and CL intensity  62
        1.4.3.2.2 Selection of pH on the tissue reactor  62-63
        1.4.3.2.3 Effect of flow rate of samples on the system  63-64
        1.4.3.2.4 Effect of NBS concentration on the CL intensity  64
        1.4.3.2.5 Effect of dichlorofluorescein concentration on the CL intensity  64
        1.4.3.2.6 Effect of NaOH concentration on the CL intensity  64-65
      1.4.3.3 Analytical characteristics, reproducibility and lifetime of the system  65
      1.4.3.4 Selectivity of the system  65-66
      1.4.3.5 Applications  66-67
    1.4.4 Conclusion  67-68
    References  68-71
Chapter 2 Investigation on a novel and native bioluminescent fungi-Armillariaella mellea  71-103
  2.1 Introduction  71-84
    2.1.1 Typical bioluminescence systems and their bioluminescent mechanisms  71-76
    2.1.2 Application of bioluminescence  76-80
    References  80-84
  2.2 An investigation on a novel and native bioluminescent fungi-Armillariaella mellea in gas phase  84-95
    2.2.1 Introduction  84-85
    2.2.2 Experimental  85-89
      2.2.2.1 Reagents and meterials  85-86
      2.2.2.2 Cultivation of strain  86-87
      2.2.2.3 Preparation of the reactor  87-88
      2.2.2.4 Apparatus  88
      2.2.2.5 Procedure  88-89
    2.2.3 Results and discussions  89-94
      2.2.3.1 Selection of culture medium  89
      2.2.3.2 Conditions optimization  89-90
        2.2.3.2.1 Effect of media pH  89
        2.2.3.2.2 Effect of temperature  89-90
        2.2.3.2.3 Effect of carrier flow rate  90
        2.2.3.2.4 Effect of sample volume  90
      2.2.3.3 Responses to different gases  90-91
      2.2.3.4 Response time  91
      2.2.3.5 Reproducibility and stability of AM biosensor  91-92
      2.2.3.6 Response of the biosensor to O_2  92
      2.2.3.7 Possible bioluminescent mechanisms  92-94
    2.2.4 Conclusion  94
    References  94-95
  2.3 An investigation on a novel and native bioluminescent fungi-Armillariaella mellea in aqueous phase  95-103
    2.3.1 Introduction  95
    2.3.2 Experimental  95-98
      2.3.2.1 Reagents and strain  95-96
      2.3.2.2 Apparatus  96
      2.3.2.3 Cultivation of strain  96-97
      2.3.2.4 Preparation of the reactor  97-98
      2.3.2.5 Preparation of standard sample  98
      2.3.2.6 Procedures  98
    2.3.3 Results and discussion  98-101
      2.2.3.1 Selection of culture medium  98
      2.3.3.2 Conditions optimization  98-100
        2.3.3.2.1 Effect of media pH  98-99
        2.3.3.2.2 Effect of temperature  99
        2.3.3.2.3 Effect of flow rate of carrier  99-100
        2.3.3.2.4 Effect of sample volume  100
      2.3.3.3 Response to DO  100
        2.3.3.3.1 Response time  100
        2.3.3.3.2 Calibration curve  100
        2.3.3.3.3 Reproducibility and stability  100
      2.3.3.4 Response to other substances (interference study)  100-101
      2.3.3.5 Sample analysis  101
    2.3.4 Conclusion  101-102
    References  102-103
Chapter 3 On-line microdialysis and microultrafiltration sampling coupled with flow-injection chemiluminescence analysis for the study of drug-protein interaction  103-141
  3.1 Introduction  103-113
    3.1.1 Principle of drug-protein interaction  104-106
    3.1.2 Methods for studying drug-protein interaction  106-110
    References  110-113
  3.2 Flow-injection chemiluminescence detection for studying protein binding of terbutaline sulfate with on-line microdialysis sampling  113-127
    3.2.1 Introduction  113-116
    3.2.2 Experimental  116-119
      3.2.2.1 Chemicals and reagents  116
      3.2.2.2 Apparatus  116-117
      3.2.2.3 Procedures  117-119
        3.2.2.3.1 Optimization of CL system  117-118
        3.2.2.3.2 Drug-protein interaction studies in vitro  118-119
    3.2.3 Results and discussion  119-124
      3.2.3.1 Kinetic figure of the CL reaction  119
      3.2.3.2 Conditions of the CL detection system  119-121
        3.2.3.2.1 Effect of H_2SO_4 concentration on the CL intensity  120
        3.2.3.2.2 Effect of KMnO_4 concentration on the CL intensity  120
        3.2.3.2.3 Effect of HCHO concentration on the CL intensity  120
        3.2.3.2.4 Effect of flow rate on the CL intensity  120-121
        3.2.3.2.5 Analytical characteristics of the CL system for terbutaline sulfate determination  121
      3.2.3.3 Dialytic efficiency calibration of microdialysis probe  121-122
        3.2.3.3.1 Effect of perfusate flow rate on the dialytic efficiency of microdialysis probe  121-122
        3.2.3.3.2 Effect of temperature on the dialytic effciency of microdialysis probe  122
      3.2.3.4 Interaction between terbutaline sulfate and BSA  122-124
    3.2.4 Conclusion  124
    References  124-127
  3.3 A flow-injection micro-ultrafiltration sampling Chemiluminescence system for on-line determination of drug-protein interaction  127-141
    3.3.1 Introduction  127-129
    3.3.2 Experimental  129-132
      3.3.2.1 Chemicals and reagents  129-130
      3.2.2.2 Apparatus  130-131
      3.3.2.3 Procedures  131-132
        3.3.2.3.1 Optimization of the CL system  131-132
        3.3.2.3.2 Drug-protein interaction studies in vitro  132
    3.3.3 Results and discussion  132-138
      3.3.3.1 Characteristics of the CL reaction  132-134
      3.3.3.2 Conditions of the CL detection system  134-135
        3.3.3.2.1 Effect of fluorescein concentration on the CL intensity  134
        3.3.3.2.2 Effect of NaOH concentration on the CL intensity  134
        3.3.3.2.3 Effect of NBS concentration on the CL intensity  134-135
        3.3.3.2.4 Chemiluminescence enhancement by surfactants'  135
        3.3.3.2.5 Effect of flow rate on the CL intensity  135
      3.3.3.3 Analytical characteristics of the CL system for cimetidine determination  135-136
      3.3.3.4 Interference study  136-137
      3.3.3.5 Interaction between cimetidine and BSA  137-138
    3.3.4 Conclusion  138
    References  138-141
Chapter 4 Novel chemiluminescnce systems and the applications in drugs analysis  141-217
  4.1 Introduction  141-167
    4.1.1 Typical chemiluminscent reaction systems  142-147
      4.1.1.1 Strong chemiluminescence systems  142-146
      4.1.1.2 Weak chemiluminescence systems  146-147
    4.1.2 Novel chemiluminscence techniques and trends  147-155
    References  155-167
  4.2 Sensitive flow-injection chemiluminescence determination of terbutaline sulfate based on the enhancement of luminol-permanganate reaction  167-182
    4.2.1 Introduction  167-169
    4.2.2 Experimental  169-172
      4.2.2.1 Reagents  169
      4.2.2.2 Apparatus  169-170
      4.2.2.3 Procedure for calibration  170-171
      4.2.2.4 Procedure for pharmaceutical preparations  171
        4.2.2.4.1 Proposed CL method  171
        4.2.2.4.2 Official method  171
      4.2.2.5 Procedure for biological fluids  171-172
        4.2.2.5.1 Determination of terbutaline sulfate in human plasma  171-172
        4.2.2.5.2 Determination of terbutaline sulfate in human urine  172
    4.2.3 Results and discussion  172-179
      4.2.3.1 Kinetic curve of CL reaction  172-173
      4.2.3.2 Optimization of the reaction conditions  173-174
        4.2.3.2.1 Effect of NaOH concentration on the CL intensity  173
        4.2.3.2.2 Effect of luminol concentration on the CL intensity  173
        4.2.3.2.3 Effect of KMnO_4 concentration on the CL intensity  173
        4.2.3.2.4 Effect of flow rate on the CL intensity  173-174
        4.2.3.2.5 Effect of sample volume on the CL intensity  174
      4.2.3.3 Performance of the proposed method  174-175
      4.2.3.4 Interference studies  175-176
      4.2.3.5 Application  176-178
        4.2.3.5.1 Analysis of pharmaceutical preparations  176
        4.2.3.5.2 Analysis of spiked plasma and urine sample  176-178
      4.2.3.6 Discussion of possible mechanism  178-179
    4.2.4 Conclusion  179
    References  179-182
  4.3 Flow-injection inhibition chemiluminescence determination of indapamide based on luminol-ferricyanide reaction  182-193
    4.3.1 Introduction  182-184
    4.3.2 Experimental  184-186
      4.3.2.1 Reagents  184
      4.3.2.2 Apparatus  184-185
      4.3.2.3 Procedure for calibration  185
      4.3.2.4 Procedure for pharmaceutical preparations  185-186
    4.3.3 Results and discussion  186-191
      4.3.3.1 Condition optimization of the CL system  186-188
        4.3.3.1.1 Selection of oxidant and the effect of its concentration on the CL intensity  186-187
        4.3.3.1.2 Effect of luminol concentration on the CL intensity  187
        4.3.3.1.3 Effect of NaOH concentration on the CL intensity  187-188
        4.3.3.1.4 Effect of flow rate on the CL intensity  188
        4.3.3.1.5 Effect of Na_2CO_3 on the CL emission  188
      4.3.3.2 Performance of the proposed method  188
      4.3.3.3 Interference study  188-189
      4.3.3.4 Applications  189-190
      4.3.3.5 Possible mechanism of the CL system  190-191
    4.3.4 Conclusion  191
    References  191-193
  4.4 Sensitive Flow-injection chemiluminescence determination of metformin based on N-bromosuccinimide-fluorescein system  193-205
    4.4.1 Introduction  193-195
    4.4.2 Experimental  195-197
      4.4.2.1 Reagents  195-196
      4.4.2.2 Apparatus  196
      4.4.2.3 Procedure for calibration  196-197
      4.4.2.4 Procedure for pharmaceutical preparations  197
    4.4.3 Results and discussion  197-202
      4.4.3.1 Effect of fluorescein concentration  197
      4.4.3.2 Effect of sodium hydroxide concentration  197-198
      4.4.3.3 Effect of NBS concentration  198
      4.4.3.4 Chemiluminescence enhancement by surfactants  198-199
      4.4.3.5 Effect of flow rate  199
      4.4.3.6 Performance of the proposed method for metformin measurements  199-200
      4.4.3.7 Interference study  200
      4.4.3.8 Application  200-201
      4.4.3.9 Possible mechanism of the chemiluminescence reaction  201-202
    4.4.4 Conclusion  202-203
    References  203-205
  4.5 N-bromosuccinimide-fluorescein based sensitive flow-injection chemiluminescence determination of phenformin  205-217
    4.5.1 Introduction  205-207
    4.5.2 Experimental  207-209
      4.5.2.1 Reagents  207
      4.5.2.2 Apparatus  207-208
      4.5.2.3 Procedure  208-209
    4.5.3 Results and discussion  209-215
      4.5.3.1 Characteristics of the CL reaction  209-210
      4.5.3.2 Optimization of conditions  210-213
        4.5.3.2.1 Effect of fluorescein concentration  210
        4.5.3.2.2 Effect of sodium hydroxide concentration  210-211
        4.5.3.2.3 Effect of NBS concentration  211-212
        4.5.3.2.4 Chemiluminescence enhancement by surfactants  212
        4.5.3.2.5 Effect of flow rate  212-213
      4.5.3.3 Performance of the proposed method for phenformin measurements  213
      4.5.3.4 Interference study  213-214
      4.5.3.5 Application  214-215
    4.5.4 Conclusion  215
    References  215-217
Publications and presentations  217-219
Acknowledgements  219

相似论文

  1. 消癌平制剂及其绿原酸单体的药动学研究与质量控制,R285
  2. 生物医用OCS/PLLA复合膜的制备与性能表征,R318.08
  3. 壳聚糖基温敏性复合水凝胶的制备及性能研究,R943
  4. 霍乱弧菌LysR/MFS调控体系的功能研究,R378
  5. 新型功能化氧化石墨烯药物载体的合成及其性能研究,TQ460.4
  6. 淮北地区实施基本药物制度试点乡镇卫生院抗高血压药使用情况的调查及分析,R95
  7. 药品扩散中的优化控制及其数值方法,R91
  8. 恩诺沙星缓释制剂的制备及其药物动力学研究,R96
  9. 新型抗抑郁药物DPI-289以及API-121的合成研究,R914
  10. 江苏省动物源大肠杆菌耐药性的监测及动物源细菌耐药性监测的探讨,S854
  11. 口服药治疗的2型糖尿病患者血糖控制现状及影响血糖达标的因素,R587.1
  12. LC-MS/MS法研究黄体酮乳膏剂在Beagle犬体内的药物动力学,R96
  13. 微透析技术和中空纤维膜液相微萃取技术的联用,R917
  14. 天津市医保患者抗菌药物利用研究,R95
  15. 霍乱弧菌群体感应调控因子VqmA活性相关基因的筛选及LysR和MFS蛋白功能的研究,R378
  16. 表面等离子共振技术和荧光光谱法研究生物分子相互作用,Q503
  17. 冠状动脉支架术后强化抗血小板对治疗后血小板高反应性的影响,R541.4
  18. ATP生物发光法检测食品细菌总数试剂盒的研究,TS207.4
  19. 奶牛主要疾病治疗用药调查,S858.23
  20. 成都地区儿童脓疱疮皮损中金黄色葡萄球菌药敏及随机扩增多态性DNA指纹分析,R440
  21. 1.3MAC七氟烷诱导时瑞芬太尼抑制气管插管反应的半数有效血浆靶浓度,R614

中图分类: > 数理科学和化学 > 化学 > 分析化学 > 仪器分析法(物理及物理化学分析法) > 光化学分析法(光谱分析法)
© 2012 www.xueweilunwen.com