学位论文 > 优秀研究生学位论文题录展示

再生核空间上的基与框架

作 者: 张立刚
导 师: 邓彩霞
学 校: 哈尔滨理工大学
专 业: 应用数学
关键词: 再生核 框架 多分辨分析 正交基
分类号: O177.1
类 型: 硕士论文
年 份: 2010年
下 载: 17次
引 用: 0次
阅 读: 论文下载
 

内容摘要


框架是表示Hilbert空间元素的工具,可以看成是基底的推广,与基底不同的是,框架不要求元素线性无关,因此分解系数不是唯一确定的。从自然界来讲,框架表示空间的元素比基底表示空间的元素更自然、更广泛。由于框架与Riesz基有一定的冗余性,可以使得在低精度下获得的小波系数却可以在相对高的精度下重建,所以近年来关于框架的研究成为小波研究的热点之一。目前,框架是应用广泛、生气勃勃的一个数学研究方向,也是图像处理,数字通讯等信息科学的重要工具之一。尤其是在信号消噪、特征提取、处理等方面应用日益广泛。本文在前人的基础上,主要研究了两个方面的内容:1.利用再生核空间的再生性质,证明在满足一定条件下,小波空间和多分辨分析的子空间均为再生核空间,由小波函数和尺度函数构造再生核,进而利用该再生核构造空间的框架,给出基于小波框架下Hilbert空间的再生核,并构造出再生核形式的框架表达,并具体地得到框架的上、下界,从而为该空间利用框架对信号进行分解和重构提供了极大的方便。2.针对再生核空间,从框架算子出发,进而讨论了基、标准正交基与框架的关系,利用再生核函数,讨论了框架性质,给出了再生核空间框架的一种构造方法。这些工作有利于在再生核空间中做数值分析和函数逼近,本文中构造的框架能够为再生核空间信号分解和重构提供良好的条件,对于一般空间中框架的构造具有一定的参考价值。

全文目录


摘要  5-6
Abstract  6-9
第1章 绪论  9-13
  1.1 框架研究的背景和现状  9-10
  1.2 再生核理论发展概况  10-12
  1.3 本课题研究的目的和意义  12
  1.4 主要内容  12-13
第2章 预备知识  13-20
  2.1 从Fourier 变换到小波分析  13-14
  2.2 多分辨分析  14-17
  2.3 再生核的定义及性质定理  17-19
    2.3.1 再生核定义  17
    2.3.2 再生核的有关定理  17-19
  2.4 本章小结  19-20
第3章 基于小波变换的再生核空间及其框架  20-28
  3.1 引言  20
  3.2 框架定义及其相关性质  20-22
  3.3 基于尺度空间框架的再生核  22-23
  3.4 基于小波空间框架的再生核  23-25
  3.5 尺度空间中框架的显式结构  25-27
  3.6 本章小结  27-28
第4章 再生核空间上的基与框架  28-36
  4.1 引言  28
  4.2 再生核空间中基与框架的关系  28-33
  4.3 再生核空间中框架的构造  33-35
  4.4 本章小结  35-36
结论  36-37
参考文献  37-41
攻读硕士学位期间发表的论文  41-42
致谢  42

相似论文

  1. 带填充墙框架结构非线性有限元分析,TU323.5
  2. 基于OSGi的领域内框架扩展方法研究及应用,TP311.5
  3. 基于SOA的Portal定制系统的优化与实现,TP311.5
  4. 基于框架的课文口头复述训练对初中生英语口头能力的影响,G633.41
  5. 基于框架的词汇教学对高一学生写作中的假朋友现象的影响,G633.41
  6. 基于IAD框架的农村生活垃圾治理公共物品的供给影响因素分析,X33
  7. 农业供应链系统网络平台的构建,S126
  8. 不完备信息系统的完备化及其上的知识获取,TP311.13
  9. 基于节点智能交互的物联网数据处理研究,TP391.44
  10. Banach空间上基和框架扰动的研究,O177.2
  11. 汉语框架自动识别中的歧义消解,TP391.1
  12. 内嵌开洞填充墙框架结构有限元非线性分析,TU323.5
  13. 高速公路服务区综合服务建筑标准化设计研究,TU248
  14. 框架理论在英语辩论中的应用研究,H311.9
  15. 中学美术课堂教学模式探索,G633.955
  16. 机械液压约束活塞发动机多学科协同优化设计支持环境研究,TP311.52
  17. 人力资源管理系统的设计与实现,TP311.52
  18. 一类再生核空间上的约化子空间问题,O177
  19. 核自适应滤波算法的研究,TN713
  20. 大型水电工程事故管理信息系统的设计与开发,TP311.52
  21. 自动信任协商框架研究及其原型设计,TP393.08

中图分类: > 数理科学和化学 > 数学 > 数学分析 > 泛函分析 > 希尔伯特空间及其线性算子理论
© 2012 www.xueweilunwen.com