学位论文 > 优秀研究生学位论文题录展示

光合细菌生物膜反应器内传输特性及产氢性能强化

作 者: 郭成龙
导 师: 朱恂
学 校: 重庆大学
专 业: 动力工程及工程热物理
关键词: 光合细菌 生物膜 传输特性 产氢性能强化 反应器
分类号: TQ116.2
类 型: 博士论文
年 份: 2013年
下 载: 117次
引 用: 0次
阅 读: 论文下载
 

内容摘要


氢能具有燃烧性能好,清洁,高效等优势,被认为是理想的能源载体之一。光合细菌能利用水和简单的有机物作为底物将太阳能转换成氢能,减少了二氧化碳的排放并实现了废物的处理,是一门新兴的生物能源技术。然而,利用光合细菌产氢过程中存在产氢速率慢与光能转化效率低等问题,因此,该技术现在还处于实验室研究阶段,与工业规模化生产还有很大的差距。为了提高光合细菌的产氢性能,将生物膜技术与光合细菌制氢技术相结合便成为了一条有效的途径。在利用光合细菌生物膜降解有机物制取氢气的过程中,培养液中的有机底物需先从溶液的主流区通过扩散作用进入到生物膜内,之后,有机底物被光合细菌生物膜代谢降解,最终生成的氢气和二氧化碳等代谢产物逆方向传输到溶液的主流区。由此可见,生物膜内的传质过程对光合细菌生物膜产氢性能有着十分显著的影响。本课题将以光合细菌生物膜制氢技术为背景,针对光合细菌生物膜复杂的结构形态特性,通过构建的板式光合细菌生物膜反应器产氢系统,研究了不同生长时期、流速和底物浓度等操作条件对光合细菌生物膜形成的影响,应用激光共聚焦显微镜及三维重构技术获取了生物膜的结构形态。通过对由激光共聚焦显微镜技术获取的生物膜孔隙及活性细胞的分布情况,建立了光合细菌生物膜反应器内含有生化反应的底物传输及降解模型,预测了不同操作条件下的生物膜内底物分布情况及反应器的底物降解特性。此外,为提高光合细菌生物膜的产氢性能,本文通过光纤技术的引入,光纤复合粗糙表面的构建及非饱和挂膜方式的应用,对光合细菌生物膜反应器内光分布特性,生物持有量和成膜特性进行了强化研究。主要获得以下结论:①采用激光共聚焦显微镜及三维立体重构技术,研究了光合细菌生物膜在成膜过程中结构形态的变化,探讨了底物浓度和流速对光合细菌生物膜结构形态的影响。实验结果发现:随着挂膜启动时间的增加,光合细菌生物膜的孔隙率不断降低,生物膜的结构越发致密。同时,过低的底物浓度会限制光合细菌生物膜的生长,降低生物膜的生物量浓度;而过高的底物浓度则导致光合细菌生物膜的结构更为疏松。此外,由于剪切力的作用,光合细菌生物膜在高流速下更易产生局部脱落的现象。②采用由激光共聚焦显微镜技术获取的生物膜孔隙及活性细胞的分布情况,建立了光合细菌生物膜反应器内含有生化反应的底物传输及降解模型,获得了不同操作条件下反应器内的底物分布和降解特性。实验结果表明:模型计算结果与实验值有较好的吻合性。在pH值为7,光照强度为6000lx,温度为30C的条件下,光合细菌生物膜活性最高,底物降解性能最好,此时,生物膜内的底物浓度最低,氢浓度最高。③提出了弥散光纤束光合细菌生物膜反应器,应用光纤材料作为光导管,强化反应器内光分布的均匀性,进而提高反应器的产氢性能。实验结果表明:弥散光纤束光合细菌生物膜反应器的产氢性能均随水力停留时间与进口底物浓度的增大呈现出先升高后降低的趋势。在水力停留时间为12h,进口底物浓度为50mmol/L的工况下,反应器的产氢速率和光能转化效率达到最大值,分别为12.1mmol/m~2/h和23.3%。④构建了弥散光纤复合粗糙表面,通过反应器比表面积的增加,提升了反应器单位体积的生物持有量。实验结果表明:复合粗糙表面的构建强化了光合细菌生物膜反应器的产氢性能。同时,20天的连续运行实验还证实了带有弥散光纤复合粗糙表面的光合细菌生物膜反应器产氢系统具有良好的稳定运行性。此外,在进口底物浓度为60mmol/L,流量为30mL/h,进口溶液的pH值为7.0,温度为30℃的最适工况下,反应器的产氢速率,底物降解速率,底物降解效率和光能转化效率分别达到1.75mmol/L/h,10.8mmol/L/h,75.0%和9.3%。⑤利用液相区内微生物迁移到达固体基质表面的概率与液相区厚度成反比的概念,提出了在非饱和液相条件下光合细菌成膜,以期强化成膜特性,缩短成膜时间。实验结果表明:光合细菌在非饱和液相条件下形成光合细菌生物膜是可行的、有效的。同时,与饱和液相中形成的光合细菌生物膜相比,非饱和液相条件下形成的生物膜的结构更为致密,成膜所需的时间更短。在饱和液相条件下进行产氢性能实验时,非饱和液相中形成的光合细菌生物膜由于结构相对致密,产物(氢、二氧化碳和挥发性有机酸等)和底物的传输阻力均相对较大,产氢性能较差;在非饱和液相条件下进行产氢性能实验时,由于饱和液相条件下形成的光合细菌生物膜的结构疏松,使得生物量浓度较低,产氢性能较差。

全文目录


摘要  3-5
ABSTRACT  5-12
符号说明  12-13
1 绪论  13-41
  1.1 概述  13-15
  1.2 生物制氢技术  15-20
    1.2.1 暗发酵制氢技术  16-17
    1.2.2 光解水制氢技术  17-19
    1.2.3 光发酵制氢技术  19-20
  1.3 高效光生物反应器研究  20-36
    1.3.1 反应器结构的改进  21-26
    1.3.2 操作条件的优化  26-31
    1.3.3 固定化技术的应用  31-36
  1.4 生物膜传输特性  36-38
  1.5 本课题的主要工作  38-41
    1.5.1 已有研究工作的不足  38-39
    1.5.2 本文主要工作  39-40
    1.5.3 课题研究意义  40-41
2 光合细菌生物膜结构形态研究  41-63
  2.1 引言  41
  2.2 板式光合细菌生物膜反应器结构  41-42
  2.3 实验装置与实验方法  42-46
    2.3.1 菌种和培养基  42-43
    2.3.2 实验系统  43-44
    2.3.3 测量方法  44
    2.3.4 物质的标记  44-46
  2.4 实验结果及分析  46-61
    2.4.1 光合细菌生物膜形成过程中结构形态的变化  46-51
    2.4.2 底物浓度对光合细菌生物膜结构形态的影响  51-56
    2.4.3 流速对光合细菌生物膜结构形态的影响  56-61
  2.5 本章小结  61-63
3 光合细菌生物膜反应器传输模型  63-91
  3.1 引言  63
  3.2 理论模型  63-69
    3.2.1 模型描述  63-64
    3.2.2 模型基本假设  64
    3.2.3 反应器内底物的降解与氢的生成  64-69
  3.3 模型的数值求解  69-70
  3.4 计算结果与分析  70-88
    3.4.1 模型的验证  71-72
    3.4.2 进口溶液 pH 值对底物降解性能的影响  72-73
    3.4.3 温度对底物降解性能的影响  73-75
    3.4.4 光照强度对底物降解性能的影响  75-76
    3.4.5 反应器主流道内底物浓度分布  76-78
    3.4.6 光合细菌生物膜内底物浓度分布  78-79
    3.4.7 光合细菌生物膜内氢浓度分布  79-88
  3.5 本章小结  88-91
4 弥散光纤束光合细菌生物膜反应器产氢特性  91-107
  4.1 引言  91
  4.2 弥散光纤束光合细菌生物膜反应器的结构  91-93
  4.3 实验材料与实验方法  93-96
    4.3.1 菌种和培养基  93
    4.3.2 实验系统  93-95
    4.3.3 反应器性能评价指标  95
    4.3.4 测量方法  95-96
  4.4 弥散光纤束光合细菌生物膜反应器挂膜启动实验  96-97
  4.5 弥散光纤束光合细菌生物膜反应器产氢性能实验  97-105
    4.5.1 水力停留时间对产氢性能的影响  97-101
    4.5.2 进口底物浓度对产氢性能的影响  101-105
  4.6 本章小结  105-107
5 弥散光纤复合粗糙表面强化光合细菌生物膜产氢特性  107-129
  5.1 引言  107-108
  5.2 弥散光纤复合粗糙表面光合细菌生物膜反应器的结构  108-109
  5.3 实验材料与方法  109-111
    5.3.1 菌种和培养基  109
    5.3.2 实验系统  109-111
    5.3.3 反应器性能评价指标  111
    5.3.4 测量方法  111
  5.4 实验结果与分析  111-127
    5.4.1 弥散光纤复合粗糙表面强化反应器产氢性能  111-114
    5.4.2 反应器运行的稳定性研究  114-116
    5.4.3 进口底物浓度对产氢性能的影响  116-119
    5.4.4 流速对产氢性能的影响  119-122
    5.4.5 进口溶液的 pH 值对产氢性能的影响  122-125
    5.4.6 温度对产氢性能的影响  125-127
  5.5 本章小结  127-129
6 非饱和液相中光合细菌生物膜成膜和产氢特性  129-163
  6.1 引言  129
  6.2 非饱和液相成膜光合细菌生物膜反应器的结构  129-131
  6.3 实验材料与方法  131-135
    6.3.1 菌种和培养基  131
    6.3.2 实验系统  131-133
    6.3.3 反应器性能评价指标  133-135
    6.3.4 分析与检测方法  135
  6.4 实验结果与分析  135-161
    6.4.1 非饱和液相下挂膜启动实验  135-137
    6.4.2 流速对产氢性能的影响  137-139
    6.4.3 初始底物浓度对产氢性能的影响  139-143
    6.4.4 非饱和与饱和液相中生物膜成膜特性  143-147
    6.4.5 饱和液相条件下光合细菌生物膜产氢特性  147-154
    6.4.6 非饱和液相条件下生物膜产氢特性  154-161
  6.6 本章小结  161-163
7 结论  163-165
8 后续研究工作展望  165-167
致谢  167-169
参考文献  169-185
附录  185-186
  A. 作者在攻读博士学位期间发表的论文目录  185-186
  B. 作者在攻读博士学位期间获得的奖励  186
  C. 作者在攻读博士学位期间参与的科研项目  186

相似论文

  1. 光合微生物制氢菌种连续培养系统及其装置研究,TQ116.2
  2. 分阶段多级厌氧—交叉流好氧反应器处理印染废水中试研究,X791
  3. SCR脱硝反应器物理场特性研究与结构优化设计,X773
  4. 携带人白细胞介素10转基因小鼠的初步研究,Q78
  5. 连作花生红壤微生物多样性的研究及微生物制剂对连作花生的影响,S565.2
  6. 脂肪酶催化猪油合成L-抗坏血酸脂肪酸酯,TS221
  7. 脂肪酶催化猪油合成Vc脂肪酸酯及其抗氧化活性的研究,TS202.3
  8. 荧光假单胞菌7-14生物膜突变株的筛选及tatC基因的克隆与功能初析,S432.4
  9. 膜生物反应器处理食品行业高浓度含油废水研究,X792
  10. 植物源细菌群体感应抑制因子的筛选及其对生物膜形成的影响,Q93
  11. 序批式膜生物反应器处理城市生活污水研究,X703
  12. 海藻酸钠—壳聚糖生物膜在引导骨再生中的应用研究,R318.08
  13. 雨滴特性及对激光信号传输的影响,P412.22
  14. 共凝集细菌的筛选、鉴定及凝集机理初步研究,X172
  15. 有机废水管式电反应器的流动和传质数值模拟,X703
  16. 光合细菌降解废水中二氯苯酚和三氯苯酚的研究,X703
  17. 光合细菌降解2-氯酚的研究,X172
  18. 环已烯水合反应强化的作用原理研究,O643.32
  19. 氢氧化镁结晶过程研究,TQ132.2
  20. 百吨/年费托合成油中试装置的工艺设计,TE665
  21. 在球形聚合物刷反应器中制备纳米贵金属及其催化活性研究,TB383.1

中图分类: > 工业技术 > 化学工业 > 基本无机化学工业 > 工业气体 > 氢气
© 2012 www.xueweilunwen.com