学位论文 > 优秀研究生学位论文题录展示

陶瓷中空纤维氧分离膜研究

作 者: 李伟
导 师: 陈初升
学 校: 中国科学技术大学
专 业: 材料学
关键词: 双相复合氧分离膜 中空纤维 相转化法 O2/CO2燃烧技术 膜反应器
分类号: TB383.2
类 型: 博士论文
年 份: 2009年
下 载: 378次
引 用: 7次
阅 读: 论文下载
 

内容摘要


基于氧离子电子混合传导的陶瓷氧分离膜有望将现有的氧气生产成本降低30%以上。氧分离膜技术实用化的主要障碍是缺乏氧渗透性能和稳定性均能满足要求的膜材料。本论文提出了突破这一障碍的新思路,即把稳定性好但氧渗透速率偏低的双相复合材料制成中空纤维膜,利用纤维膜单位面积氧渗透速率高、单位体积可填充的膜数量大的优点,从而大幅度提高膜组件和膜装置的制氧能力。第一章简要介绍了陶瓷氧分离膜的原理、背景和应用,重点综述了陶瓷中空纤维氧分离膜的研究进展、现状和主要问题。第二章研究了由氧离子导体Zr0.84Y0.16O1.92(YSZ)和电子导体La0.8Sr0.2MnO3-δ(LSM)构成的双相复合氧分离膜。采用相转化/烧结法将复合材料制成气密的中空纤维。所制得的纤维膜的外径为1.64 mm,壁厚为0.16 mm。中空纤维膜的热膨胀系数为11.1×10-6 K-1,三点支撑法测定的断裂强度为152±12 MPa。测量纤维膜的氧渗透速率时采用长度为57.0 mm的样品,其外壁与空气接触,用氦气或者CO2作为吹扫气将渗透的氧携带出,用气相色谱分析。在950℃和He气吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为2.1×10-7mol·cm-2·s-1。采用二氧化碳替代氦气作为吹扫气,氧渗透速率没有下降。基于YSZ-LSM复合膜优异的耐CO2侵蚀性能,我们采用该分离膜实验验证了富氧燃烧—CO2捕获所需的O2/CO2混合气的制备新工艺,即在膜管的外侧施加高的氧分压(压缩空气),通过调节管内CO2吹扫气的速率,可以获得氧分压为0.2-0.3大气压的O2/CO2混合气。若采用该混合气作为含碳燃料的助燃剂,燃烧产物含高浓度的CO2,可以方便地实现CO2的捕获。与常见的单相钙钛矿型氧分离膜材料相比,YSZ-LSM复合氧分离膜的另一个重要特点是不含贵重和有毒的元素。综合考虑材料的氧渗透率和稳定性以及中空纤维膜的高填充密度,YSZ-LSM中空纤维膜的实用化前景良好。第三章研究了Ce0.8Sm0.2O2-δ(SDC)和LSM双相复合氧分离膜,其中SDC作为氧离子导电相,其氧离子电导率在中温明显高于YSZ。采用相转化/烧结法将该复合材料制成气密的中空纤维膜。在air/He和air/CO2梯度下,中空纤维膜在950℃时的氧渗透速率分别为3.2×10-7mol·cm-2·s-1和3.0×10-7mol·cm-2·s-1。经过700多个小时的测试,膜管的氧渗透速率只略有下降。SDC-LSM膜材料在二氧化碳中稳定存在,且具有较高氧渗透速率,可望用于制备富氧燃烧—CO2捕获所需的O2/CO2混合气。采用活塞式流动模型和Wagner氧渗透理论模拟了双相复合中空纤维膜的氧渗透行为。该模拟方法可以用于膜管(组件)的氧气产能计算等。第四章研究了YSZ-La0.8Sr0.2Cr0.5Mn0.5O3-δ(LSCM)双相复合氧分离膜。LSCM是一种新报道的固体氧化物燃料电池阳极材料,在还原性条件下能保持稳定。采用相转化/烧结法将该双相复合膜制成气密的中空纤维膜。所制得的纤维膜形貌均匀,膜体内部不含有手指状的大孔,只含有少量闭气孔。纤维膜具有优异的机械性能,其断裂强度高达279±5 MPa。在950℃和He吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为3.3×10-8mol·cm-2·s-1。改用同样流速的还原性气体CO作为吹扫气,经过250小时左右时间氧渗透速率达到稳定,为3.9×10-7mol·cm-2·s-1。在air/CO梯度下经过600小时实验后,膜管仍然保持完好,没有出现裂纹。鉴于膜材料在大氧分压梯度下优异的稳定性,YSZ-LSCM中空纤维膜有希望用于膜反应器。第五章研究了SDC-LSCM双相复合氧分离膜。与前述几章不同,本研究没有采用SDC和LSCM粉体作为起始原料,而是采用金属氧化物和碳酸盐作为前驱物来制备浆料,挤出成型。这种改进的相转化法制备中空纤维膜的方法去掉了预先合成陶瓷粉这一步骤,将本来五步的工艺过程缩减为四步,并将成相和烧结在一步完成,缩短了制备时间,也减少了能耗,有利于降低制备成本。采用TGA/DTA研究了纤维膜坯体的热解行为,采用热膨胀仪研究了膜管的高温烧结过程。最终选定的热处理条件是:在N2(+H24%)的气氛中,以2℃/min的速率升温将纤维膜坯体升至800℃,保温240min,除去有机物,升温至1350℃,保温300min,得到气密的陶瓷中空纤维膜。SEM和XRD分析表明烧结后的膜管由SDC和LSCM两相构成,不含其它杂相。在950℃和He吹扫速率30ml/min的条件下,中空纤维膜的氧渗透速率为1.4×10-7mol·cm-2·s-1。改用同样流速的还原性气体CO吹扫时,氧渗透速率大幅增加至3.3×10-6mol·cm-2·s-1。显然,从空气侧渗入的氧与CO发生反应,使得膜管内部的氧分压大幅度降低,增大了氧渗透的驱动力。XRD分析表明:氧渗透实验后膜管的相组成没有发生变化,但SEM分析发现LSCM相的品粒穿孔,几乎破碎成粉状,这可能表明其在还原性气氛中的稳定性不够高。第六章研究了SrCo0.8Fe0.2O3-δ—SrZrO3(10 mol%)((SCF-SZ)复合膜。该复合膜为非对称型结构,其基底层为多孔的中空纤维,顶层为同质的致密氧分离膜。基底层采用相转化法制备,顶层膜则采用浸渍/烧结法制备。所制得的复合膜的外径为1.70 mm,壁厚为0.25 mm。在950℃和He气吹扫流速30 ml/min的条件下测得的氧渗透速率为1.0×10-6mol·cm-2·s-1。我们还研究了以二氧化碳为吹扫气时SCF-SZ复合膜的透氧行为。当吹扫气中二氧化碳浓度低于40%时,SCF-SZ复合膜具有较高的透氧速率。采用活塞式流动模型和Wagner氧渗透理论模拟了中空纤维氧分离膜的氧渗透过程,得出的结果与所测实验数据符合较好。第七章总结了前述的研究工作,并展望了陶瓷中空纤维氧分离膜的实用化前景和面临的挑战。

全文目录


致谢  5-10
摘要  10-13
Abstract  13-16
第一章 陶瓷中空纤维氧分离膜的背景、应用和主要问题  16-44
  1.1.前言  16
  1.2.陶瓷氧分离膜的氧渗透原理  16-20
  1.3.陶瓷氧分离膜材料  20-23
    1.3.1.单相氧分离膜材料  21-22
    1.3.2.双相复合氧分离膜材料  22-23
  1.4.制备加工技术  23-26
    1.4.1.膜组件的基本类型  23-24
    1.4.2.相转化法制膜技术  24-26
  1.5.陶瓷中空纤维氧分离膜的研究和发展现状  26-34
    1.5.1.制备过程研究  26-30
    1.5.2.性能表征  30-32
    1.5.3.膜组件  32-33
    1.5.4.氧渗透过程的计算模拟研究  33-34
  1.6.存在的主要问题  34-35
  1.7.本论文的研究思路和主要内容  35-36
  参考文献  36-44
第二章 Zr_(0.84)Y_(0.16)O_(1.92)-La_(0.8)Sr_(0.2)MnO_(3-δ)双相复合中空纤维膜的氧分离性能研究和O_2/CO_2混合气制备  44-63
  2.1.引言  44-46
  2.2.实验  46-48
    2.2.1.样品制备  46-47
    2.2.2.性能表征  47-48
    2.2.3.氧渗透测量  48
  2.3 结果  48-56
    2.3.1.膜管相组成和微结构  48-50
    2.3.2.中空纤维膜的热和机械性能  50
    2.3.3.在CO_2气氛中的稳定性能  50-51
    2.3.4.两相体积比例对氧渗透性能的影响  51-52
    2.3.5.总电导率  52
    2.3.6.氧渗透性能  52-53
    2.3.7.吹扫气流速对氧渗透速率的影响  53-54
    2.3.8.制备O_2/CO_2混合气  54-55
    2.3.9.实验后膜管相组成和微结构  55-56
  2.4.讨论  56-58
    2.4.1.膜材料稳定性  56-57
    2.4.2.膜材料氧渗透速率的影响因素  57-58
  2.5.结论  58-60
  参考文献  60-63
第三章 Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)MnO_(3-δ)双相复合中空纤维膜的稳定性能、氧渗透性能研究和氧渗透行为模拟  63-80
  3.1.引言  63-65
  3.2.实验  65-66
    3.2.1.样品制备  65-66
    3.2.2.性能表征  66
  3.3.结果  66-70
    3.3.1.相组成和微结构  66-68
    3.3.2.机械性能  68
    3.3.3.air/He和air/CO_2梯度下的稳定性  68-69
    3.3.4.氧渗透性能  69
    3.3.5.不同吹扫气流速对氧渗透速率的影响  69-70
  3.4.讨论  70-76
    3.4.1.氧渗透模型  70-71
    3.4.2.模拟结果  71-76
  3.5.结论  76-77
  参考文献  77-80
第四章 Zr_(0.84)Y_(0.16)O_(1.92)-La_(0.8)Sr_(0.2)Cr_(0.5)Mn_(0.5)O_(3-δ)双相复合中空纤维氧分离膜研究  80-95
  4.1.引言  80
  4.2.实验  80-83
    4.2.1.样品制备  80-81
    4.2.2.性能表征  81-83
  4.3.结果  83-88
    4.3.1.相组成和微结构  83-84
    4.3.2.机械性能  84
    4.3.3.电导性能  84-85
    4.3.4.氧渗透性能  85-86
    4.3.5.实验后膜管的相组成和微结构  86-88
  4.4.讨论  88-92
    4.4.1.决定膜管微观形貌的主要制备参数  88-91
    4.4.2.氧渗透性能  91-92
    4.4.3.稳定性  92
  4.5.结论  92-94
  参考文献  94-95
第五章 Ce_(0.8)Sm_(0.2)O_(2-δ)-La_(0.8)Sr_(0.2)Cr_(0.5)Mn_(0.5)O_(3-δ)双相复合中空纤维膜制备和氧渗透性能研究  95-110
  5.1.引言  95
  5.2.实验  95-97
    5.2.1.样品制备  95-96
    5.2.2.性能表征  96-97
  5.3.结果  97-104
    5.3.1.坯体热处理和烧结过程  97-100
    5.3.2.物相组成和微结构  100-101
    5.3.3.机械性能  101-102
    5.3.4.氧渗透性能  102-103
    5.3.5.实验后膜管的相组成和微观形貌  103-104
  5.4.讨论  104-106
    5.4.1.改进的相转化法制备中空纤维膜  104-105
    5.4.2.氧渗透速率和稳定性  105-106
  5.5.结论  106-108
  参考文献  108-110
第六章 SrCo_(0.8)Fe_(0.2)O_(3-δ)-SrZrO_3中空纤维膜的制备和氧分离性能研究  110-123
  6.1.引言  110-111
  6.2.实验  111-112
  6.3.结果  112-118
    6.3.1.相组成和微结构  112-114
    6.3.2.吹扫气流速、氧分压、温度与氧渗透速率的关系  114-117
    6.3.3.air/CO_2梯度下的氧渗透性能和稳定性能  117-118
  6.4.讨论  118-120
    6.4.1.氧渗透行为模拟  118-119
    6.4.2.中空纤维膜与体材料氧渗透行为的比较  119-120
  6.5.结论  120-121
  参考文献  121-123
第七章 总结与研究展望  123-125
学术论文与研究成果  125-126

相似论文

  1. 微透析技术和中空纤维膜液相微萃取技术的联用,R917
  2. 复三维电极—生物膜反应器脱除饮用水中硝酸盐的试验研究,X703
  3. 膜吸收法浓海水烟气脱硫试验研究,X701.3
  4. 厌氧氨氧化生物膜反应器快速启动及影响因素研究,X703.1
  5. 基于人工神经网络的SBBR短程硝化反应仿真研究,X703
  6. 新型光催化超滤膜反应器降解4BS偶氮染料,X703
  7. 中空纤维膜与尼龙网处理生活污水的对比试验研究,X703
  8. 添加剂对反渗透支撑膜孔结构调控作用机理的研究,TB383.2
  9. 苯基哌嗪衍生物单体的合成及复合纳滤膜制备的研究,TB383.2
  10. 聚砜膜上固定纤维素酶及其酶膜反应器的研究,TQ925
  11. 碱性水电解用聚砜隔膜的制备和研究,TB383.2
  12. Fe-ZSM-5分子筛膜的制备及在苯酚羟基化反应中的应用,TQ203
  13. 聚氨酯中空纤维阻尼材料的制备工艺及性能研究,TB535.1
  14. PMP中空纤维膜制备及结构与性能研究,TQ320.721
  15. 利用序批式生物膜反应器实现厌氧氨氧化脱氮的研究,X703
  16. 聚偏氟乙烯中空纤维膜的低温等离子体改性与性能研究,X52
  17. Zielger-Natta复合催化剂的制备及其乙烯聚合的研究,TQ325.12
  18. 中空纤维膜接触器壳程添加构件强化传质研究,TQ051.8
  19. 湿纺工艺制备聚丙烯腈基中空纤维成形机理研究,TQ342.31
  20. 膜分散法制备纳米氧化锌,TB383.1
  21. 臭氧处理改性制备亲水性聚偏氟乙烯膜(PVDF)的研究,TQ325.4

中图分类: > 工业技术 > 一般工业技术 > 工程材料学 > 特种结构材料
© 2012 www.xueweilunwen.com