学位论文 > 优秀研究生学位论文题录展示

基于模糊C均值的脑部磁共振图像分割新算法研究

作 者: 王丹丹
导 师: 陈武凡;李彬
学 校: 南方医科大学
专 业: 生物医学工程
关键词: 磁共振图像 图像分割 模糊C均值 空间信息 多目标规划 核方法
分类号: TP391.41
类 型: 硕士论文
年 份: 2008年
下 载: 209次
引 用: 3次
阅 读: 论文下载
 

内容摘要


图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。医学图像分割是其他医学图像处理与模式识别问题,如特征量化、特征配准、三维重建等的前处理技术,并可以为临床诊断和辅助治疗提供有力的支持。本文主要针对脑部磁共振(magnetic resonance,MR)图像分割进行研究,脑部MR图像分割问题根据不同的目的主要有:一,脑组织的提取,即从脑部MR图像中提取脑组织;二,脑组织分类,即将脑部MR图像标记为灰质、白质与脑脊液三种不同的组织区域;三,脑部病变组织的提取等。本文研究内容主要涉及正常脑组织的分类问题。理想的脑部MR图像应该是分段常量图像,但由于磁共振成像固有的一系列噪声与伪影的存在,譬如电子噪声,偏移场失真与部分容积效应,理想的分段常量属性通常被破坏。又由于人体解剖的个体差异较大,临床应用对医学图像分割的准确度和算法的执行速度要求较高,使得已有的算法远未达到理想的效果。模糊C均值算法(Fuzzy C-Means,FCM)是目前脑部MR图像分割算法中较常用的算法,传统的FCM算法仅利用灰度信息,它未考虑相邻象素间的相关性,未能利用图像的空间信息,在分割含有噪声污染图像时效果不好。本文对传统的FCM算法进行改进,提出了两种改进算法,这些方法在提高图像分割精度和鲁棒性等方面具有显著效果。本文首先对医学图像分割的现状作了详尽的综述。这部分主要介绍了医学图像分割方法的各种分类方法,特别对近年来医学图像分割方面的新算法及其特点作了一个详细的总结。第三章主要介绍了近年来国际上出现的很多改进的FCM算法。将它们大体分为三类:第一类,改变隶属度的约束条件;第二类,引进空间信息约束项;第三类,引入核函数。对这些算法中比较典型的算法做了简单的分析和评价。第四章是本文的重点内容,根据脑部MR图像真实的灰度值具有分片为常数的特性,按照合理利用空间信息的原则,提出了一种基于多目标规划的FCM聚类算法。在传统的FCM算法中增加了空间信息约束项,提出了新的目标函数,并运用Lagrange乘数法,得到该规划问题的解。通过对模拟方块图和脑部MR图像以及临床脑部MR图像的分割实验,表明该算法在分割被噪声污染图像时,比传统的FCM算法及其改进算法具有更精确的图像分割能力。第五章是本文的又一重点内容,首先介绍了模糊核模型,并把模糊核与基于多目标规划的模糊C均值聚类算法相结合,提出了一种改进的模糊C均值聚类算法。实验表明该算法对被噪声污染图像亦具有鲁棒性,特别是对被椒盐噪声污染图像的分割,可以有效地滤除噪声得到良好的分割结果。

全文目录


摘要  3-5
ABSTRACT  5-9
第一章 绪论  9-13
  1.1 脑部磁共振图像简介  9-10
  1.2 脑部MR图像的分割  10
  1.3 医学图像分割的目的及意义  10-11
  1.4 本文的结构  11
  1.5 本文的主要研究工作及创新点  11-13
第二章 医学图像分割简介  13-22
  2.1 图像分割的定义  13
  2.2 医学图像分割算法分类  13-19
    2.2.1 经典的分割法  14-16
    2.2.2 基于统计学的分割方法  16
    2.2.3 人工神经网络分割算法  16
    2.2.4 基于形变模型的分割算法  16-17
    2.2.5 基于模糊集理论的分割方法  17-18
    2.2.6 其它方法  18-19
  2.3 医学图像分割方法性能评价  19-22
第三章 模糊C均值算法及其改进算法  22-28
  3.1 模糊C均值算法  22-23
  3.2 LAGRANGE乘子法  23-24
  3.3 模糊C均值常见的几类改进算法  24-28
    3.3.1 改变隶属度的约束条件  24-25
    3.3.2 增加空间信息的约束项  25-26
    3.3.3 引入核函数  26-28
第四章 基于多目标规划的模糊C均值聚类算法  28-35
  4.1 引言  28
  4.2 MOP-FCM聚类算法(MULTIPLEOBJECTIVEPROGRAMMINGFCM)  28-30
  4.3 实验  30-34
    4.3.1 模拟方块图  30
    4.3.2 模拟脑部MR图像  30-33
    4.3.3 临床脑部MR图像  33-34
  4.4 结论  34-35
第五章 利用空间信息的核模糊C均值聚类算法  35-41
  5.1 前言  35-36
    5.1.1 核的定义及常用核函数  35-36
  5.2 基于核函数的FCM算法(KERNEL FCM)  36-37
  5.3 利用空间信息的核FCM算法(SIKFCM)  37-38
  5.4 实验  38-40
  5.5 结论  40-41
第六章 总结和展望  41-42
  6.1 本文研究工作的总结  41
  6.2 后续工作的展望  41-42
参考文献  42-47
攻读硕士学位期间发表或完成论文情况  47-48
致谢  48-51
附件  51

相似论文

  1. 森林防火系统中图像识别算法的研究,TP391.41
  2. 细菌聚类算法及其在图像分割问题中的研究与应用,TP391.41
  3. 融合粒子群和蛙跳算法的模糊C-均值聚类算法研究,TP18
  4. 演化聚类算法及其应用研究,TP311.13
  5. 肺部病灶感兴趣区域分割算法研究,TP391.41
  6. 基于参数活动轮廓模型的医学图像分割方法研究,TP391.41
  7. 空间信息网骨干节点部署方案的设计与仿真,TN915.09
  8. 空间信息网容错拓扑控制算法的设计与实现,TN915.02
  9. 基于模糊理论的研发项目组合决策研究,F224
  10. 不可微复合多目标规划最优性条件的研究,O221.6
  11. 改进的模糊C均值聚类算法及其应用,O159
  12. 模糊随机需求环境下的供应链采购优化模型,F224
  13. 两级制造链加工顺序协同调度问题研究,F406
  14. 模糊C均值聚类算法的相关问题研究,TP311.13
  15. 模糊聚类分析在煤与瓦斯突出事故预测中的应用研究,TP311.13
  16. 基于改进模糊C均值的入侵检测算法及应用研究,TP393.08
  17. 空间信息处理中基于模糊技术的数学模型的改进,O159
  18. 空间信息网络拓扑结构分析系统设计与实现,TP311.52
  19. 遂宁经开区人口管理系统设计与实现,TP311.52
  20. 基于GIS智能校园信息系统设计与实现,TP311.52
  21. 一种智能手机上基于位置的多媒体信息分享系统,TP37

中图分类: > 工业技术 > 自动化技术、计算机技术 > 计算技术、计算机技术 > 计算机的应用 > 信息处理(信息加工) > 模式识别与装置 > 图像识别及其装置
© 2012 www.xueweilunwen.com