学位论文 > 优秀研究生学位论文题录展示
基于数据挖掘技术的客户消费行为分析系统的开发与应用
作 者: 梁莹
导 师: 覃海生;李政
学 校: 广西大学
专 业: 计算机技术
关键词: 数据挖掘 数据仓库 客户消费行为 预测
分类号: TP311.13
类 型: 硕士论文
年 份: 2011年
下 载: 52次
引 用: 0次
阅 读: 论文下载
内容摘要
国内通信行业运营商在经过几次分拆和重组以及3G牌照的发放后,行业的竞争和对用户的争夺日益激烈,在如何提升服务意识、发展销售渠道和新的宣传方式等方面都面临着新的问题。在以客户为中心的竞争环境中,如果既能拥有大量的信息,又能拥有先进的分析信息的工具,就能在激烈的竞争中取得优势。数据挖掘是从大量数据中提取或挖掘知识进行数据分析,从而发现潜在信息的技术。对客户进行细分能够帮助企业从更加深入全面的角度洞察客户、了解客户价值取向,基于这种洞察在合适的时间通过合适的渠道向合适的客户提供量身定做的产品套餐。本文首先介绍了数据挖掘的相关理论和发展现状,其次对客户消费行为分析系统进行了设计目标和功能模块的需求分析,给出了系统的流程图,确定了选用聚类、决策树、关联规则三种算法进行数据挖掘,并详细介绍了聚类、决策树、关联规则三种算法的原理。本文结合通信行业运营商的实际情况,采用了K-means聚类算法、C5.0决策树和Apriori关联规则应用于客户消费行为分析,进行数据挖掘,设计并实现了客户消费行为分析系统。在数据挖掘模块的设计中,首先将常用的两种聚类算法进行比较,认为K-means算法能够很好的解决给出的数值型属性的数据对象的聚类问题,经常以局部最优结束,算法是相对可伸缩和高效率的,对输入数据顺序的敏感度一般,算法结果比较容易理解,建模速度也较快,与通信运用商现有数据库的特点相吻合,得出K-means算法更适用于进行客户消费行为分析的结论。本文将K-means算法用于对某通信运营商的客户进行细分为例,阐述了算法的实现过程,对结果进行了分析,并对算法进行了改进,减小了K-means算法因其初始聚类中心的随机选取而可能出现的算法在局部极小处收敛的可能性,提高了算法的聚类效果。其次,本系统还运用了Apriori关联规则进行数据挖掘,以长话漫游包产品是否适合捆绑销售为例,详细阐述了Apriori关联规则的实现过程,对结果进行了分析,并对算法进行了改进,由于Apriori关联规则存在多次扫描数据库,并通过模式匹配检查候选项集而导致效率低的问题,经过改进,Apriori关联规则只需扫描一次数据库,大大的提升算法了的效率。第三,本文将ID3、C4.5、C5.0、CART等主要决策树算法的关系和发展历程进行了介绍,C5.0决策树算法更适用于进行客户消费行为分析,本系统将C5.0决策树算法用于营销案目标客户的筛选,本文以长话包客户筛选为例,详细阐述C5.0决策树算法的实现过程,并对结果进行了分析总结。实际应用表明,数据挖掘技术对客户消费行为分析能取得很好的效果。帮助企业决策者洞察客户消费行为,从而达到提高企业利润的目的。最后,本文对基于数据挖掘集市的客户消费行为分析系统进行了总结。
|
全文目录
摘要 4-6 ABSTRACT 6-11 第1章 绪论 11-18 1.1 课题背景 11-13 1.2 研究现状 13-14 1.2.1 数据挖掘研究现状 13-14 1.2.2 客户消费行为分析研究 14 1.3 课题的意义 14-15 1.4 主要工作 15-16 1.5 论文组织结构 16-18 第2章 数据挖掘概述 18-25 2.1 数据挖掘的概念及特点 18 2.2 数据挖掘的过程 18-19 2.3 客户消费行为分析系统需求分析 19-20 2.4 数据挖掘的方法 20-23 2.4.1 聚类 20-21 2.4.2 关联规则 21-22 2.4.3 决策树 22-23 2.5 数据挖掘的应用 23-24 2.6 本章小节 24-25 第3章 基于数据挖掘技术的客户消费行为分析系统的设计 25-29 3.1 系统设计目标 25-26 3.2 系统总体构架设计 26-27 3.3 系统流程图 27 3.4 数据挖掘系统模型 27-28 3.5 本章小节 28-29 第4章 数据仓库的设计 29-35 4.1 数据仓库的建设 29-31 4.2 建立维表 31-34 4.3 建立初始的多维数据模型 34 4.4 数据挖掘软件的简介 34 4.5 本章小结 34-35 第5章 数据挖掘模块的设计 35-58 5.1 数据挖掘模块概述 35 5.2 数据挖掘模块用例图 35-36 5.3 数据挖掘模块总体活动图 36-37 5.4 指标的选择 37-39 5.5 数据的预处理 39-40 5.6 K-means聚类算法在客户消费行为分析中的应用 40-43 5.6.1 K-means算法的实现 40-41 5.6.2 结果分析 41 5.6.3 算法改进 41-43 5.7 Apriori关联规则在客户消费行为分析中的应用 43-48 5.7.1 Apriori频繁项集 44 5.7.2 Apriori算法的实现 44-46 5.7.3 结果分析 46-47 5.7.4 算法改进 47-48 5.8 决策树C5.0在客户消费行为分析中的应用 48-55 5.8.1 样本选择 48-50 5.8.2 决策树C5.0算法原理及实现过程 50-53 5.8.3 结果分析 53-55 5.9 系统界面展示 55-57 5.10 本章小节 57-58 第6章 总结与展望 58-60 参考文献 60-63 致谢 63-64 攻读学位期间发表论文情况 64
|
相似论文
- K公司计划及预测改进对于合理库存配置的研究,F224
- 基于图的标志SNP位点选择算法研究,Q78
- 液力减速器制动性能及用于飞机拦阻的仿真研究,TH137.331
- 深空撞击探测末制导律的设计与分析,V448.2
- 卫星姿态的磁控制方法研究,V448.222
- Hall推进器寿命预测和壁面侵蚀加速实验研究,V439.2
- 高精度激光跟踪装置闭环控制若干关键问题研究,TN249
- 网络语音传输丢包的恢复技术,TN912.3
- 基于神经网络的水厂投药预测控制研究,TP273.1
- 网络化系统的鲁棒模型预测控制,TP273
- 硝酸钠制配过程中pH值的预测控制及仿真研究,TP273
- 离散非线性系统输入到状态稳定性研究,TP13
- 过程支持向量机及其在卫星热平衡温度预测中的应用研究,TP183
- 基于数据挖掘技术的保健品营销研究,F426.72
- 高忠英学术思想与经验总结及运用补肺汤加减治疗呼吸系统常见病用药规律研究,R249.2
- 张炳厚学术思想与临床经验总结及应用地龟汤类方治疗慢性肾脏病的经验研究,R249.2
- 山西省人口中长期发展变化趋势预测,O212.1
- 云南省勐腊县南坡铜矿床成矿规律与成矿预测研究,P618.41
- 计算智能在数字化卷烟叶组配方中的应用研究,TS44
- 地州级卷烟销量预测影响因素研究,F224
- 基于不确定性系统研究方法的高校学生学习成绩分析与预测,G642.4
中图分类: > 工业技术 > 自动化技术、计算机技术 > 计算技术、计算机技术 > 计算机软件 > 程序设计、软件工程 > 程序设计 > 数据库理论与系统
© 2012 www.xueweilunwen.com
|