学位论文 > 优秀研究生学位论文题录展示
面向输电线路障碍物识别的多视角重建方法研究
作 者: 姚刚
导 师: 刘勇
学 校: 三峡大学
专 业: 计算机应用技术
关键词: 障碍物识别 多视角合成 梯度幅值 自适应多窗口 立体匹配
分类号: TM726
类 型: 硕士论文
年 份: 2011年
下 载: 40次
引 用: 0次
阅 读: 论文下载
内容摘要
高压输电线路由于在野外长期受到机械张力,电气闪络,材料老化的影响而产生损伤,对电力系统的运行造成严重威胁,因此必须对输电线路定期巡检。目前主要的输电线路巡检方法有人工巡检和直升机巡检,由于输电线路特殊的工作环境,人工巡检方法劳动强度大,巡检精度低,工作人员的危险性高;直升机巡检相对提高了巡检效率和精度,但增加了技术难度,且运行费用较高。输电线路巡检机器人是目前研究的热点,能代替人工和直升机进行线路巡检。输电线路巡线机器人导航技术是巡线机器人的关键技术之一,而线路上障碍物的识别是机器人自主巡线的关键,本文针对线路障碍物自动识别问题,从多视角重建的角度进行了深入研究,研究的具体内容如下:1)提出了一种基于多视角重建的输电线路巡线机器人障碍物识别模型。首先分析了传统输电线路巡线机器人障碍物识别方法中存在的问题,将障碍物识别过程分成线上和线下两个部分,在线下部分对输电线路上常见的障碍物进行多视角障碍物轮廓重建,形成多视角虚拟轮廓影像库;在线上部分,以任意角度拍摄障碍物图像,并提取障碍物轮廓,然后和线下重建的虚拟影像库进行匹配以实现障碍物识别。本文障碍物识别方法将复杂计算在线下完成,线上完成简单计算,能快速完成障碍物的识别,同时能消除拍摄角度的影响。2)针对上述模型提出了几种核心算法。根据本文所提出的障碍物识别方法的流程,关键是实现多视角障碍物图像的重建和障碍物类型识别。在障碍物图像重建过程中,本文以图像梯度幅值为基础,针对输电线路障碍物图像特征,改进了一组算法,包括自适应梯度幅值和形态学组合滤波算法、自适应多窗口梯度幅值边缘检测算法、基于视差插值的立体匹配算法和多视角轮廓重建算法;最后还提出了一种基于点统计的障碍物识别方法。本文实验环节使用标准图像对提出的图像预处理算法进行了模拟实验,并使用真实的输电线路障碍物图像进行了识别测试以验证算法的有效性,结果显示,障碍物识别方法能得到较好的识别效果,通过对几种算法的研究,形成了较为系统的障碍物识别方法。
|
全文目录
内容摘要 4-5 Abstract 5-9 引言 9-10 1 绪论 10-15 1.1 课题研究目的及意义 10-11 1.2 研究现状和发展动态 11-12 1.3 巡检机器人导航的难点 12-13 1.4 本文研究内容和结构 13-15 2 基于多视角重建的障碍物识别模型 15-22 2.1 传统输电线路障碍物识别方法 15-18 2.2 传统障碍物识别方法存在的问题 18-19 2.3 基于多视角重建的障碍物识别模型 19-21 2.4 本章小结 21-22 3 改进的自适应梯度幅值滤波算法 22-30 3.1 障碍物图像噪声特征分析 22 3.2 传统图像滤波算法 22-23 3.3 梯度幅值滤波原理 23-25 3.4 自适应梯度幅值滤波算法 25-28 3.5 滤波效果评价及迭代次数确定 28-29 3.6 本章小结 29-30 4 自适应多窗口梯度幅值轮廓提取算法 30-39 4.1 传统轮廓提取方法 30-31 4.2 梯度幅值轮廓提取 31-33 4.3 等分块多窗口梯度幅值轮廓提取算法 33-35 4.4 自适应多窗口梯度幅值轮廓提取算法 35-38 4.5 轮廓提取效果评价 38 4.6 本章小结 38-39 5 基于视差插值的立体匹配算法 39-47 5.1 立体匹配基本原理 39-41 5.2 立体匹配研究概述 41-42 5.3 基于视差插值的立体匹配算法 42-45 5.4 立体匹配效果评价 45-46 5.5 本章小结 46-47 6 轮廓多视角重建及障碍物识别 47-52 6.1 摄像机模型 47-49 6.2 多视角障碍物轮廓重建 49-51 6.3 基于点统计的障碍物识别 51 6.4 本章小结 51-52 7 实验结果与分析 52-62 7.1 输电线路障碍物识别软件 52-53 7.2 图像滤波实验及分析 53-55 7.3 轮廓提取实验及分析 55-57 7.4 立体匹配实验及分析 57-60 7.5 多视角重建实验及分析 60 7.6 障碍物识别实验及分析 60-61 7.7 本章小结 61-62 8 总结与展望 62-64 参考文献 64-69 后记 69-70 附录:攻读硕士学位期间发表的部分学术论著 70
|
相似论文
- 双目立体视觉关键技术研究,TP391.41
- 基于双目视觉的三维重建算法研究与实现,TP391.41
- 双目立体匹配的算法研究及其多核并行化,TP391.41
- 时空结合的深度视频估计及相关研究,TP391.41
- 基于稀疏表示的立体匹配算法和红外目标的检测与跟踪,TP391.41
- 自然三维电视系统中深度获取算法研究,TN949.2
- 图像边缘检测技术的研究,TP391.41
- 基于双目立体视觉的多相机三维重建技术实现,TP391.41
- 基于双目立体视觉的催泪弹智能化发射系统设计,TJ413
- 基于机器视觉的AGV动态路径识别算法研究,TP391.41
- 图像边缘检测与应用,TP391.41
- 基于障碍物智能识别的人机融合汽车安全预警研究,U495
- 基于改进canny算法的图像边缘检测的研究,TP391.41
- 基于视差信息的3D视频后处理的评估与改进,TP391.41
- 基于深度图像的视图合成技术研究,TP391.41
- 基于双目视差的立体场景重构技术研究,TP391.41
- 基于双目立体视觉的人脸三维数据获取方法研究,TP391.41
- 基于SIFT快速算法的单目立体视觉应用研究,TP391.41
- 全景立体图像显示视角的研究,TP391.41
- 基于双目视觉的运动物体检测系统研究,TP391.41
中图分类: > 工业技术 > 电工技术 > 输配电工程、电力网及电力系统 > 输配电技术 > 输配电线路
© 2012 www.xueweilunwen.com
|