学位论文 > 优秀研究生学位论文题录展示

新型冲压推进系统的波系结构及其MHD控制

作 者: 孙晓晖
导 师: 陈志华
学 校: 南京理工大学
专 业: 力学
关键词: 超燃冲压发动机 冲压加速器 磁流体 洛伦兹力 流体控制 激波 爆轰波
分类号: O381
类 型: 博士论文
年 份: 2013年
下 载: 67次
引 用: 0次
阅 读: 论文下载
 

内容摘要


新型冲压推进系统,如超燃冲压发动机、斜爆轰波发动机与冲压加速器等,其流场结构非常复杂,且具有高瞬态特性。由于目前的相关研究还不充分,因而无法达到工程应用的要求,一系列问题尚需解决,如扩大可操控的飞行马赫数范围、强激波对推进系统进气道的影响等。另一方面,高速流场中,强激波与爆轰波导致研究对象周围的气流电离,使得应用磁流体(MHD)技术对强激波与爆轰波的控制和优化流场结构变成可能,相关研究仍处于初级阶段。本文基于带化学反应与MHD控制源项的Euler方程,分别采用混合Roe/HLL及WENO计算格式,利用自适应加密笛卡尔网格与沉浸边界法对新型冲压推进系统的波系结构及其MHD控制机理进行了研究。首先对管内爆轰波的诱导过程进行数值模拟,研究了爆轰波的诱导特性,验证了所采用数值方法的有效性,并揭示了弱激波绕射方块障碍物并在障碍物后方碰撞加速诱导爆轰波的机理。数值模拟了超燃冲压发动机双楔形进气道流场及其MHD控制过程,计算结果表明应用洛伦兹力可控制进气道上的斜激波,洛伦兹力的方向对MHD控制的效果具有重要影响,并且具有合适大小和方向的洛伦兹力可以同时将不同超声速来流情况下的斜激波恢复到设计情况,但其流场情况会稍有不同。通过对单、双楔斜爆轰波流场结构及其MHD控制过程的数值研究,表明,斜爆轰波可分为稳定与不稳定两种情况。对于稳定斜爆轰波,其波阵面位置基本固定,而不稳定斜爆轰波则相反。洛伦兹力可以将不同马赫数条件下的稳定斜爆轰波恢复到其设计位置,但是,对于双楔,布置在第一道斜劈表面的洛伦兹力无法有效控制第二道斜激波,当后楔倾角过大时,斜爆轰波流场将失稳。洛伦兹力可使不稳定斜爆轰波趋于稳定,却很难控制不稳定斜爆轰波恢复到设计位置,因此MHD控制的应用主要针对稳定斜爆轰波阵面。采用高精度WENO计算格式数值模拟了冲压加速器冷态实验。通过与相关实验结果对比,表明计算方法很好地描述了冲压加速器内部流场和激波结构,验证了WENO格式捕捉高速流场结构的有效性,并完整地呈现了弹丸周围激波的形成与发展过程及相关参数的变化情况,可以对冲压加速器冷态实验给予一定的指导与借鉴,并对接下来的热壅塞与超爆轰模态冲压加速器的研究提供指导。数值研究了热壅塞模态冲压加速器内的流场情况,研究了预混气体反应速率、弹丸形状与速度对冲压加速器工作状态与性能的影响。结果表明只有速度与反应速率相匹配,才能形成热壅塞模态流场,合理的弹丸形状可以使来流速度与预混气体反应速率相匹配的范围扩大。而且,当流场处于热壅塞模态,火焰阵面可以稳定在船型弹丸肩部后方,并产生最大推力;当火焰阵面稳定在弹丸底部时,推力受到尾涡脱落的影响产生脉动。进一步研究了超爆轰模态,冲压加速器内的流场情况,发现在一定的马赫数范围内,斜爆轰波可驻定在弹丸肩部或头部,且都能产生推力。对于典型的超爆轰模态(斜爆轰波驻定在弹肩),反应速率增加时,弹丸推力增大。对来流马赫数过低或过高的流场情况,采用洛伦兹力可扩大弹丸在典型超爆轰模态运行的马赫数范围,发现马赫数过低时,洛伦兹力可加速弹丸头部气流,使斜爆轰波驻定在弹肩,从而形成典型超爆轰模态。当马赫数为某定值时,若无洛伦兹力控制,则因涡的产生最终无法形成超爆轰模态,而洛伦兹力则可使斜爆轰波驻定在弹丸前楔,对弹丸产生推力,并使流场保持稳定。

全文目录


摘要  5-7
Abstract  7-12
1 绪论  12-28
  1.1 超燃冲压发动机  12-18
    1.1.1 工作原理  12-14
    1.1.2 主要类型  14-15
    1.1.3 国内外的发展情况  15-18
  1.2 冲压加速器  18-21
    1.2.1 基本介绍  18-20
    1.2.2 国内外的发展情况  20-21
  1.3 磁流体(MHD)控制  21-26
    1.3.1 MHD在超燃冲压发动机中的应用  22-24
    1.3.2 国内外的发展情况  24-26
  1.4 本文的主要工作  26-28
2 数值方法  28-43
  2.1 控制方程  29-30
  2.2 计算格式  30-38
    2.2.1 有限体积法  30-32
    2.2.2 间断分解算法-Godunov差分格式  32-33
    2.2.3 混合Roe/HLL格式  33-36
    2.2.4 WENO格式  36-37
    2.2.5 龙格-库塔格式  37-38
  2.3 网格生成  38-43
    2.3.1 自适应笛卡尔  38-40
    2.3.2 沉浸边界法  40-43
3 爆轰及其诱导特性研究  43-60
  3.1 爆轰理论  43-53
    3.1.1 激波  43-48
    3.1.2 Chapman-Jouguet模型  48-49
    3.1.3 ZND模型  49-52
    3.1.4 爆轰的多维结构  52-53
  3.2 爆轰波诱导特性研究  53-59
    3.2.1 空管诱导特性  54-55
    3.2.2 障碍物诱导特性  55-58
    3.2.3 加速诱导爆轰比较  58-59
  3.3 本章小结  59-60
4 斜激波与斜爆轰波的MHD控制  60-78
  4.1 高超声速进气道流场的MHD控制  60-65
    4.1.1 计算模型  60
    4.1.2 计算结果与讨论  60-65
  4.2 单楔斜爆轰波的MHD控制  65-70
    4.2.1 计算模型与验证  65-66
    4.2.2 稳定单楔斜爆轰波的MHD控制  66-68
    4.2.3 不稳定单楔斜爆轰波的MHD控制  68-70
  4.3 双楔斜爆轰波及其MHD控制  70-76
    4.3.1 计算模型  70-71
    4.3.2 驻定双楔斜爆轰波流场特性  71-72
    4.3.3 双楔斜爆轰波的MHD控制  72-74
    4.3.4 后楔倾角增加对斜爆轰波MHD控制的影响  74-76
  4.4 本章小结  76-78
5 冲压加速器热壅塞模态研究  78-92
  5.1 冷态流场研究  78-82
    5.1.1 计算模型与验证  78-79
    5.1.2 冷态流场分析  79-82
  5.2 热壅塞模态流场研究  82-91
    5.2.1 计算模型与验证  82-83
    5.2.2 反应速率与弹丸速度对流场结构与推力影响  83-88
    5.2.3 弹丸形状对流场结构与推力的影响  88-91
  5.3 本章小结  91-92
6 冲压加速器超爆轰模态与MHD控制  92-110
  6.1 超爆轰模态流场研究  92-103
    6.1.1 弹丸速度对超爆轰模态的影响  92-100
    6.1.2 反应速率对超爆轰模态弹丸推力影响  100-103
  6.2 超爆轰模态流场的MHD控制  103-109
  6.3 本章小结  109-110
7 结论与展望  110-113
  7.1 本文的主要结论  110-111
  7.2 本文的主要创新点  111
  7.3 问题与展望  111-113
致谢  113-114
参考文献  114-122
附录  122

相似论文

  1. 超燃冲压发动机燃烧模态分类技术研究,V235
  2. 比例式气液两相高温燃料流量调节阀的研究,V233.2
  3. 太阳活动和EUV波现象研究,P353.7
  4. 激波与火焰相互作用发展过程的数值模拟,O381
  5. 激波诱导的多层流体界面上的Richtmyer-Meshkov不稳定现象的实验研究,O354.5
  6. 三维等直隔离段内激波串特性研究,V211.48
  7. 水基纳米磁流体的制备及其在电磁功能织物开发中的应用,TB383.1
  8. 激波管内正庚烷点火延时的实验研究,TK16
  9. 超声速燃烧室内异型凹腔结构对流动过程的影响,V231.2
  10. 煤油点火延时特性及其污染效应的激波管研究,TK16
  11. 稳定的单组份Fe3O4磁流体的制备、表面性质研究,O614.811
  12. 强电流真空磁流体电弧模型的仿真研究,TM501.2
  13. N波信号处理模块的研制,TJ06
  14. 壁面条件对爆震波起爆以及传播过程影响机理的研究,V430
  15. 高超声速非平衡流粘性相互作用研究,V411.4
  16. 再生冷却超燃冲压发动机启动阶段的传热特性研究,V231.1
  17. 超燃冲压发动机燃料供应系统方案研究,V235
  18. 基于凹腔—支板火焰稳定器的超声速燃烧室实验与数值模拟研究,V231.2
  19. 超燃冲压发动机总体方案设计与优化研究,V235
  20. 超燃冲压发动机建模与仿真研究,V430
  21. 超声速气流中点火、火焰传播实验与数值模拟研究,V231.2

中图分类: > 数理科学和化学 > 力学 > 爆炸力学 > 爆震(爆轰)理论
© 2012 www.xueweilunwen.com