学位论文 > 优秀研究生学位论文题录展示

双馈感应风力发电机不对称低电压穿越的研究

作 者: 喻冲
导 师: 宋平岗
学 校: 华东交通大学
专 业: 电力电子与电力传动
关键词: 双馈感应式风力发电系统 电网电压不对称跌落 网侧变换器 转子侧变换器 协同控制 低电压穿越 双dq、PI调节器 PR电流调节器
分类号: TM315
类 型: 硕士论文
年 份: 2012年
下 载: 113次
引 用: 0次
阅 读: 论文下载
 

内容摘要


随着风电机组装机容量的越来越大,其在能源系统中所占的比例越来越大。因此电网对风电并网的要求越来越高,当电网发生故障时,此时风电机组须继续并网运行,并和传统发电技术一样对电网提供频率和电压支持用来帮助电网恢复。故并网运行的风力发电机组须具有低电压穿越(LVRT)能力。由于电网发生不对称跌落的概率更大,故当今的研究方向已逐步从电压对称跌落下的不间断运行向电压不对称跌落先的不间断运行延伸。本文以装机容量所占比例比较大的双馈型风力发电机组为研究对象,首先对采用传统控制策略下的双馈型风力发电机组运行在不对称电压跌落下的运行特性进行了研究和仿真。从仿真结果中发现其在不对称跌落期间将产生比较严重的二倍频分量,因此以抑制二倍频分量为研究目的,提出了解决此问题的方法。并在转子侧和网侧变换器控制策略上分别进行了改进。在电网不对称跌落下,对转子侧和网侧变换器在正、负序旋转坐标系下的数学模型进行了研究,分别得到了双馈发电机和网侧变换器在这两种旋转坐标系下的数学模型和瞬时功率模型。然后对提高转子侧和网侧变换器的故障穿越能力提出了三种控制目标,以这三种控制目标和它们的数学模型为基础设计出采用双dq、PI电流调节器的控制策略。由于在采用双dq、PI电流调节器的控制策略中需要涉及电压和电流的正、负序分量分解,此时在正、负序分量分解的环节中需要采用陷波器,因此会对电流控制环带来延时,针对此缺点,设计出了一种采用比例-谐振(PR)电流调节器的控制策略。通过仿真证明了这两种控制策略的可行性。在电网电压不对称跌落下,对双馈感应型风力发电机组的低电压穿越进行了研究,首先对在电网不对称跌落下的转子侧和网侧变换器的协同控制进行了研究,分别对转子侧和网侧变换器指定了一种控制目标,通过此协同控制可尽量减小所含二倍频分量的电磁量的数量。然后对Crowbar保护电路进行了介绍,并对Crowbar保护电路的阻值的计算进行了研究,此阻值的计算关系到保护电路工作的好坏。最后对双馈感应式风电机组在电网发生小值跌落和比较严重跌落下的低电压穿越提出了两种不同的应对措施:在小值跌落时通过转子侧和网侧变换器的协同控制来渡过这一时期;在比较严重的跌落时,需要采用Crowbar电路来旁路转子侧变换器,对其进行保护。最后在MATLAB/Simulink上建立了一个1.5MW的双馈感应型风力发电机组的模型,对其在电压发生小值不对称跌落和比较严重不对称跌落下的情况进行了仿真,结果表明在小值跌落时通过转子侧和网侧变换器的协同控制可安全渡过这一时期,而在电网发生比较严重的不对称跌落时,通过在转子侧串入Crowbar保护电路可很好的限制其转子电流。

全文目录


摘要  4-6
ABSTRACT  6-11
第一章 绪论  11-20
  1.1 课题背景  11-14
    1.1.1 国外风力发电的发展现状  11-13
    1.1.2 国内风力发电的发展现状  13-14
  1.2 风力发电技术分类现状  14-15
    1.2.1 带有齿轮箱的全功率型风力发电系统  14
    1.2.2 无齿轮箱的全功率型风力发电系统  14-15
    1.2.3 双馈感应式风力发电系统  15
  1.3 双馈型风力发电系统低电压穿越的研究现状  15-18
  1.4 论文主要内容  18-20
第二章 对称电网故障下 DFIG 风力发电系统的动态建模与控制  20-39
  2.1 引言  20-21
  2.2 DFIG 的数学模型  21-26
    2.2.1 ABC 坐标系下的发电机数学模型  21-23
    2.2.2 dq 坐标系下的数学模型  23-25
    2.2.3 同步速ωs下 DFIG 的等效模型  25-26
  2.3 网侧 PWM 变换器数学模型  26-28
    2.3.1 三相静止 ABC 坐标系下的数学模型  27-28
    2.3.2 两相旋转 dq 坐标系下的数学模型  28
  2.4 两相旋转 dq 坐标系下的 DFIG 功率分析  28-30
  2.5 对称电网故障下 DFIG 的控制策略  30-34
    2.5.1 网侧变换器的控制策略  30-32
    2.5.2 转子侧变换器控制策略  32-34
  2.6 仿真研究  34-37
  2.7 本章小结  37-39
第三章 电网不对称跌落下 DFIG 网侧变换器的建模和控制  39-60
  3.1 引言  39
  3.2 不对称电磁量的瞬时对称分量及其表达形式  39-41
  3.3 基于双 dq、PI 电流控制器的控制策略  41-52
    3.3.1 网侧变换器在双 dq 坐标系下的数学模型  41-42
    3.3.2 电网不对称跌落下的功率分析  42-44
    3.3.3 电网电压不对称跌落时网侧变换器的控制目标  44-45
    3.3.4 正负序分解的原理和增强型锁相环(EPLL)的设计  45-47
    3.3.5 采用双 dq、PI 电流控制器的控制系统设计  47-48
    3.3.6 仿真研究  48-52
  3.4 基于静止坐标系下比例谐振(PR)电流控制器的控制策略  52-59
    3.4.1 网侧变换器在两相静止αβ坐标系下的数学模型  52-53
    3.4.2 比例谐振(PR)电流调节器的设计  53-54
    3.4.3 采用比例谐振(PR)电流控制器的控制系统设计  54-55
    3.4.4 仿真研究  55-59
  3.5 本章小结  59-60
第四章 电网不对称跌落下 DFIG 转子侧变换器的建模和控制  60-80
  4.1 引言  60
  4.2 电网不对称跌落下 DFIG 的动态建模  60-66
    4.2.1 DFIG 的数学模型  61-62
    4.2.2 DFIG 的瞬时功率模型  62-66
  4.3 基于双 dq、PI 电流控制器的控制策略  66-73
    4.3.1 电网电压不对称跌落时转子侧变换器的控制目标  66-67
    4.3.2 采用双 dq、PI 电流控制器的控制系统设计  67-69
    4.3.3 仿真研究  69-73
  4.4 基于静止坐标系下比例谐振(PR)电流控制器的控制策略  73-79
    4.4.1 DFIG 在αβ坐标系下的数学模型  73-74
    4.4.2 比例谐振(PR)电流控制器的控制系统设计  74-75
    4.4.3 仿真研究  75-79
  本章小结  79-80
第五章 电网电压不对称跌落下 DFIG 的低电压穿越  80-94
  5.1 引言  80
  5.2 不对称电网故障下 DFIG 电磁分析  80-83
  5.3 电网不对称跌落下 DFIG 机组的协同控制  83-87
  5.4 Crowbar 保护原理  87-89
    5.4.1 被动式 Crowbar 电路  87-88
    5.4.2 主动式 Crowbar 电路  88-89
  5.5 仿真研究  89-93
    5.5.1 电网小值跌落  89-92
    5.5.2 电网比较严重跌落  92-93
  本章小结  93-94
第六章 总结与展望  94-96
  6.1 论文主要工作回顾  94-95
  6.2 后续工作展望  95-96
参考文献  96-101
个人简历 在读期间发表的学术论文  101-102
致谢  102

相似论文

  1. 温室气体与大气污染物协同控制机制研究,X51
  2. 双馈风力发电系统的低电压穿越技术研究,TM614
  3. 六自由度并联平台力/位控制策略研究,TP242
  4. 电力系统电压无功控制方法研究,TM761.1
  5. 电压跌落条件下并网逆变器锁相环与电流控制技术研究,TM464
  6. 双馈风力发电机并网低电压穿越技术的研究,TM315
  7. 变速恒频双馈感应风力发电系统低电压穿越技术研究,TM614
  8. 双摄像机协同探测与鹰眼观测系统设计,TP391.41
  9. 风力发电系统低电压穿越特性的研究,TM614
  10. 基于CROWBAR电路的双馈风电机组低电压穿越控制策略研究,TM614
  11. 基于全钒液流电池的大规模风电并网技术,TM912
  12. 交流励磁变速恒频风力发电系统的励磁控制研究,TM315
  13. 全数字电子套结控制系统研究,TM383.6
  14. 风力发电机组低电压穿越特性的控制策略与测试方法研究,TM315
  15. 改进型UPQC在风电场低电压穿越中的应用研究,TM614
  16. 基于DSP的网侧变换器控制技术研究,TM46
  17. 风电接入对系统暂态稳定的影响及低压穿越能力研究,TM712
  18. 双馈型变速恒频风力发电机转子侧变流器控制技术研究,TM461
  19. 1.5MW双馈型风机变频器控制系统,TM315
  20. 双馈风力发电变流器控制技术研究,TM46
  21. 双馈风力发电系统低电压穿越技术研究,TM614

中图分类: > 工业技术 > 电工技术 > 电机 > 发电机、大型发电机组(总论) > 风力发电机
© 2012 www.xueweilunwen.com