学位论文 > 优秀研究生学位论文题录展示

光分组交换网中的光信号处理技术研究

作 者: 义理林
导 师: 胡卫生
学 校: 上海交通大学
专 业: 通信与信息系统
关键词: 全光网 光分组交换网 掺铒光纤放大器 受激布里渊散射 光纤参量放大 半导体光放大器 慢光 光逻辑 波长变换 光开关
分类号: TN929.1
类 型: 博士论文
年 份: 2008年
下 载: 590次
引 用: 4次
阅 读: 论文下载
 

内容摘要


我国互联网国际出口总容量从2000年初的351Mbps增长到2006年初的136106Mbps,六年累计增加约430倍。网络带宽的增长,主要来源于数据业务的大幅度增长。未来的光网络将向融合分组化交换、支持多样性业务的、光电交换集成的、多颗粒带宽的、传送与交换融合的、安全高效的、灵活组网的方向发展。光分组交换网络(OPS)是光交换的理想模式,也是公认的光交换结构的终极发展目标。OPS的主要优点是带宽利用效率高,而且能提供各种服务,满足客户的需求。目的是把大量的交换业务转移到光域实现,从而实现交换容量与波分复用系统(WDM)的传输容量相匹配。OPS网络结构中的关键技术包括光开关光逻辑、全光波长变换以及光缓存等多项技术。其中关开关是任何光交换网的核心功能器件,完成信号的交换和路由功能;光逻辑则完成信头检测处理重写等功能,用以实现未来的光控光交换;波长变换用于解决网络中的波长冲突,提高网络灵活性。光缓存是OPS网络必需的器件,用以实现数据包的存储功能,解决信号时间上的冲突;而以上所有的光信号处理都会导致信号的损耗,因此在OPS网络中,光放大器也必不可少,工作于OPS网络中的放大器还需具有宽带,以及增益控制的功能。只有上述各项技术全面成熟发展,才能推动OPS网络的快速发展,实现真正的全光交换网络。本论文围绕全光分组交换网络中的关键技术研究开展了如下工作:1.基于SOA/相位调制器的超快光开关光开光是OPS网络的核心功能设备,一个大型的OPS网络需要大规模的超快光开关阵列。因此,超快(<1ns)以及易于扩展是设计光开关需要考虑的重要因素,同时成本也是不可忽略的另一个重要因素。SOA和铌酸锂晶体可以支持快速的光开关操作,将SOA或者铌酸锂相位调制器(PM)放置于Sagnac干涉环中可以形成一个2×2的超快光开关,通过比较两者性能,我们最终选择PM-Sagnac干涉光开关。基于此PM-Sagnac干涉光开关首次实现了带组播功能的偏振无关2×2超快(<1ns)光开关操作,并在此基础上构建大型低成本超快光开关矩阵。2.基于半导体光放大器(SOA)的可重构全光逻辑门以及波长变换全光逻辑以及波长变换也是OPS网络的关键技术。波长变换用于解决网络拥塞造成的波长冲突,全光逻辑用以实现包头识别处理等功能。为了提高网络的灵活性,通常要求一个全光逻辑器件能实现多种逻辑功能,并且各逻辑操作结果的波长可根据需要进行调节以避免网络拥塞。我们利用SOA的非线性偏振旋转效应(NPR)以及交叉增益调制效应(XGM)相结合实现了可重构全光逻辑门及波长变换,避免了以往基于干涉结构可重构逻辑门的高成本,以及基于四波混频效应(FWM)的可重构逻辑门对操作波长的限制。理论上基于单个SOA的NRR效应可实现所有逻辑操作(NOT,XOR,XNOR,OR,NOR,AND,NAND)。实验中,受器件的限制,我们实现了10-Gb/s数据的NOT,OR,NOR,AND,NAND逻辑操作以及同相波长变换(即变换后的信号和初始信号具有相同的极性)。3.自动增益控制掺铒光纤放大器(AGC-EDFA)的设计光开关以及逻辑操作都会造成信号功率的损耗,因此在OPS网络节点需要使用放大器补偿信号功率。此外,由于光分组的长度一般在几十微秒到几毫秒量级,与EDFA的铒离子能级驰豫时间相当,当某一波长光分组进入EDFA时会产生类似SOA中的XGM效应,影响其余信道上的光分组功率,因此工作于OPS网络中的EDFA还需具有增益控制的功能。同时考虑到OPS网络对带宽的需求,我们分别设计了C波段增益控制EDFA和C+L波段增益控制EDFA。1)结合环形腔AGC-EDFA和反射型AGC-EDFA结构的优点,以低成本的方式解决了基于双光栅反射型AGC-EDFA中增益难以调谐的问题,并且采用双通结构提高增益效率。2)设计了一个低噪声的并联式C+L波段全光AGC-EDFA。1525nm-1610nm波长范围的信号都可得到有效放大,除了在1565nm-1572nm的“死区”外,所有波长的噪声指数都控制在约5.5dB的噪声水平。临界增益控制输入功率为-5dBm,在增益控制区内,增益变化小于0.2dB。4.基于宽带受激布里渊散射(SBS)的可调慢光延迟线性能研究光缓存是OPS网络研究的重中之重,它的研究进展决定了OPS的实用进程。目前还没有可实用的光缓存,我们旨在通过减慢光速来实现信号的存储或者同步。基于SBS的慢光研究是目前的一大热点,我们的相关研究工作如下:1)首次提出通过对布里渊泵浦进行相位调制来展宽布里渊放大器增益谱,将布里渊增益带宽展至1.6GHz,首次演示了1.25Gb/s伪随机序列(PRBS)信号的在宽带SBS中的延迟,并比较了非归零(NRZ)和归零(RZ)脉冲的在此宽带SBS中的延迟性能。2)进一步提出利用迈克-曾德强度调制器(MZM)替代相位调制器(PM)实现泵浦相位调制,展宽布里渊增益谱,可避免PM产生的相位调制信号具有的强时钟边带导致信号质量劣化的问题,从而可将布里渊增益谱展宽至10GHz。3)在噪声直接调制展宽布里渊泵浦的情况下,使用一高功率电放大器将高斯电噪声放大至饱和,此时能量主要集中在中心的高斯噪声将变成能量均匀分布的超高斯噪声。超高斯噪声调制产生的布里渊泵浦以及对应的布里渊增益谱也呈超高斯分布,因此在相同的布里渊泵浦功率下,相对高斯噪声调制情况,超高斯分布的泵浦将获得更大的布里渊增益,亦即更大的慢光延迟量。4)首次采用具有高谱效率,抗色散性强的10Gb/s双二进制(Duobinary)信号作为布里渊信号在宽带SBS中进行延迟,与10Gb/s的NRZ信号进行比较,可避免慢光色散以及滤波效应带来的信号劣化,从而大幅度提高延迟后的信号质量,具体表现为延迟后的接收灵敏度得到有效提高。5)首次利用带宽可调的高斯型SBS增益实现了任意比特速率DPSK信号的同时延迟和解调,并基于此获得了创记录的10Gb/s信号无误码延迟性能(最大无误码延迟时间为81.5ps)。5.基于光纤参量放大(FOPA)的可调慢光延迟线相对SBS慢光,基于FOPA的慢光延迟线主要优点在于带宽更大,可支持更高速率(如160Gb/s)的信号延迟;另外,参量噪声低于布里渊放大,因此延迟导致的信号质量劣化更小。1)理论推导了基于参量效应的慢光表达式,利用窄带(带宽约1.6nm)光纤参量放大实现可调慢光延迟,通过改变泵浦波长或光纤的零色散波长,实现整个通信波段(C+L波段)信号的可控延迟。2)用10Gb/s RZ数据包代替单个信号脉冲进行延迟演示,首次演示了无误码慢光操作,50ps宽脉冲延迟15ps灵敏度代价仅为0.6dB,从系统的高度验证了参量可调慢光延迟线的用于实际系统的可行性。

全文目录


摘要  3-7
ABSTRACT  7-17
第一章 绪论  17-41
  1.1 光纤通信技术的发展  17-23
    1.1.1 引言  17
    1.1.2 全光网  17-23
      1.1.2.1 光线路交换  19-20
      1.1.2.2 光突发交换  20-21
      1.1.2.3 光分组交换  21-23
  1.2 光分组交换研究现状及分析  23-25
  1.3 光分组交换系统的核心器件  25-29
    1.3.1 光开关  25
    1.3.2 光逻辑单元  25-26
    1.3.3 全光波长变换器  26-27
    1.3.4 光放大器  27-28
    1.3.5 光缓存  28-29
  1.4 本论文的研究工作以及创新点  29-32
    1.4.1 基于SOA/相位调制器的超快光开关  29
    1.4.2 基于SOA 的可重构全光逻辑门以及波长变换  29-30
    1.4.3 自动增益控制EDFA 的设计  30
    1.4.4 基于宽带SBS 的可调慢光延迟线性能研究  30-31
    1.4.5 基于FOPA 的可调慢光延迟线  31-32
  参考文献  32-41
第二章 基于SOA/相位调制器的超快光开关  41-59
  2.1 光开关研究背景  41-46
    2.1.1 光开关分类  42-44
    2.1.2 大型超快光开关阵列  44-46
  2.2 基于ON-OFF SOA 以及SOA-Sagnac 干涉环的超快光开关  46-49
    2.2.1 基于on-off SOA 的快速光开关  46-47
    2.2.2 基于SOA-Sagnac 干涉环的快速光开关  47-49
  2.3 基于相位调制器-Sagnac 干涉环的超快光开关  49-54
    2.3.1 基于PM-Sagnac 干涉环的光开关结构及其操作原理  49-51
    2.3.2 PM-Sagnac 干涉环开关性能测试  51-54
      2.3.2.1 开关波长相关性测试  51-52
      2.3.2.2 静态开关性能测试  52-53
      2.3.2.3 开关时间测试  53-54
  2.4 基于PM-Sagnac 干涉环的超快光开关构建开关阵列  54-56
  2.5 本章小结  56-57
  参考文献  57-59
第三章 基于SOA 的可重构全光逻辑门及波长变换器  59-77
  3.1 全光逻辑门及波长变换研究进展  59-61
  3.2 基于SOA 的可重构全光逻辑门相关研究  61-64
    3.2.1 基于干涉型SOA 中XPM 效应的可重构逻辑门  61-62
    3.2.2 基于SOA 的XGM 和FWM 效应的可重构逻辑门  62-63
    3.2.3 基于SOA 的FWM 效应及偏振编码信号的可重构逻辑门  63-64
  3.3 在单个SOA 上同时实现可重构逻辑操作及波长变换  64-71
    3.3.1 操作原理  65-67
    3.3.2 实验方案  67-68
    3.3.3 逻辑操作静态测试结果  68-69
    3.3.4 逻辑操作结果演示  69-71
  3.4 本章小结  71-72
  参考文献  72-77
第四章 增益控制掺铒光纤放大器(EDFA)设计及性能研究  77-100
  4.1 研究背景  77-83
    4.1.1 增益控制技术  78-80
      4.1.1.1 增益的泵浦控制  78-79
      4.1.1.2 增益的光控制  79-80
    4.1.2 增加工作带宽  80-83
      4.1.2.1 增益平坦技术  80-81
      4.1.2.2 L 波段增益提高技术  81-82
      4.1.2.3 多波段宽带EDFA 技术  82-83
  4.2 利用一个布拉格光栅实现可调谐增益控制双通EDFA  83-89
    4.2.1 新型双通EDFA 结构  83-84
    4.2.2 实验结果与分析  84-88
      4.2.2.1 增益与噪声指数  85-86
      4.2.2.2 增益谱  86-88
      4.2.2.3 增益控制的临界条件  88
    4.2.3 本节小结  88-89
  4.3 低噪声全光增益控制 C+L 波段EDFA  89-94
    4.3.1 实验装置  89-90
    4.3.2 实验结果与分析  90-93
      4.3.2.1 C 和L 波段的两束激光光谱  90-91
      4.3.2.2 波长交错复用器的作用  91-93
      4.3.2.3 增益谱和噪声指数  93
    4.3.3 本节小结  93-94
  4.4 本章小结  94-95
  参考文献  95-100
第五章 基于光纤SBS 效应的可调慢光延迟线系统性能研究  100-149
  5.1 光缓存  101-102
  5.2 慢光基本原理及主要研究进展  102-111
    5.2.1 慢光基本原理  102-103
    5.2.2 慢光研究现状  103-111
      5.2.2.1 基于光纤SBS 效应的可调慢光延迟线  104-110
      5.2.2.2 基于光纤SRS 效应的可调慢光延迟线  110
      5.2.2.3 基于光纤参量放大的可调慢光延迟线  110-111
  5.3 基于泵浦相位调制展宽布里渊增益谱的慢光研究  111-122
    5.3.1 实验演示及性能分析  112-119
      5.3.1.1 实验方案  112-113
      5.3.1.2 泵浦和布里渊增益谱展宽  113-114
      5.3.1.3 眼图测量  114-115
      5.3.1.4 延迟测量  115-116
      5.3.1.5 信号质量测量与分析  116-118
      5.3.1.6 可控延迟  118-119
    5.3.2 基于相位调制进一步展宽布里渊增益谱  119-122
  5.4 Duobinary 信号在宽带布里渊放大器中的延迟性能研究  122-134
    5.4.1 Duobinary 信号的产生  122-126
    5.4.2 宽带布里渊增益谱的产生及优化  126-128
    5.4.3 Duobinary 信号延迟  128-134
      5.4.3.1 延迟实验方案  128-130
      5.4.3.2 窄带滤波前后的输出光谱  130-131
      5.4.3.3 信号延迟的性能测量  131-133
      5.4.3.4 信号延迟量与信号开关增益的关系  133-134
  5.5 基于带宽可调的SBS 同时延迟和解调速率可变的DPSK 信号  134-143
    5.5.1 实验方案  136-137
    5.5.2 实验结果与分析  137-143
      5.5.2.1 窄带滤波前后的光谱测量  137-138
      5.5.2.2 SBS 增益谱与解调后的眼图  138-139
      5.5.2.3 解调和延迟性能测试  139-143
  5.6 本章小结  143-144
  参考文献  144-149
第六章 基于光参量放大器的可调慢光延迟线  149-171
  6.1 参量慢光研究进展  149-153
  6.2 基于通信波段光纤参量放大的慢光研究  153-166
    6.2.1 理论分析及优化设计  153-160
      6.2.1.1 参量慢光理论推导  153-156
      6.2.1.2 数值仿真及时延优化  156-160
    6.2.2 实验验证及系统测试  160-165
      6.2.2.1 实验装置  160-161
      6.2.2.2 参量增益谱和信号增益测量  161-164
      6.2.2.3 时延及误码测试  164-165
    6.2.3 分析与讨论  165-166
  6.3 本章小结  166-167
  参考文献  167-171
总结与展望  171-175
  1. 基于 SOA/相位调制器的超快光开关  171
  2. 基于 SOA 的可重构全光逻辑门以及波长变换  171-172
  3. 自动增益控制 EDFA 的设计  172
  4. 基于 SBS 的宽带可调慢光延迟线性能研究  172-173
  5. 基于 FOPA 的可调慢光延迟线  173-175
附录Ⅰ缩略语  175-177
附录Ⅱ符号表  177-179
攻读博士期间科研成果  179-183
攻读博士期间参与科研项目  183-184
致谢  184-186

相似论文

  1. 基于SPPs波导的光学特性研究,TN252
  2. 基于光子晶体的可重构分插复用器(ROADM)的特性研究,TN929.1
  3. 光控相控阵雷达用光纤延迟技术,TN958.92
  4. 高精度光纤延时技术研究,TN253
  5. 石墨烯的功能化及其光电性能研究,TN304
  6. 具有相变特性的氧化钒薄膜制备与光学特性研究,TN304.055
  7. 有机/无机复合材料光学性质及其可调控光波导器件,TB33
  8. 强非局域非线性介质中多孤子的相互作用,O437
  9. 微机械光开关微反射镜的制作和驱动结构的有限元分析,TN405
  10. 光纤环腔的开关特性和双稳特性,TN253
  11. 用于光交叉互连的光折变理论和实验研究,O438.1
  12. 2×2光波导开关的理论研究与工艺制备,TN252
  13. 基于半导体化合物材料的全光开关研究,TN304
  14. 基于(100)硅片的MOEMS光开关的研制,TN25
  15. MOEMS阵列光开关的制作与性能测试,TN256
  16. 强非局域空间高阶模孤子波的解析解及全光开关和逻辑门的实现,O431.2
  17. 二维光子晶体波导耦合器开关特性的FDTD研究,TN252
  18. 多通道分布式温度传感器的研制,TP212.11
  19. 含乙烯基的二联吡啶衍生物及其Cu(I)配合物的合成和性能研究,O641.4
  20. 全光开关在OTDM系统中的应用研究,TN929.11
  21. 基于光纤光栅的温度不敏感生化传感器及全光开关研究,TP212.2

中图分类: > 工业技术 > 无线电电子学、电信技术 > 无线通信 > 光波通信、激光通信
© 2012 www.xueweilunwen.com